-
本文采用CTU (corner transport upwind)+CT (constrained transport)算法求解理想可压缩磁流体动力学(magneto-hydro-dynamic, MHD)方程, 仿真研究了不同方向磁场控制下高斯分布轻质气柱界面受平面冲击波扰动后的演化过程, 揭示了磁场方向对界面不稳定性的影响机理. 仿真结果探讨了有/无磁场作用下流场特性与波系结构的发展, 对比分析了磁场方向对气柱的长度、高度、射流宽度和体积压缩率的影响, 并结合流场上半区环量、能量分量、速度和磁场力分布, 多角度分析了磁场方向对界面不稳定性的影响机理. 结果表明, 磁压力推动涡量远离界面, 降低了涡量在密度界面上的沉积而附着在分裂后的涡层上, 从而有效抑制Richtmyer-Meshkov不稳定性对界面的影响; 由于磁张力附着在被分离的涡层上, 且其作用方向与界面因速度剪切而卷起涡的方向相反, 因此抑制了界面因Kelvin-Helmholtz不稳定性而形成涡串. 另外, 纵向磁场控制下的磁张力反作用于中轴射流方向, 同样抑制了Rayleigh-Taylor 不稳定性的发展.
-
关键词:
- Richtmyer-Meshkov不稳定性 /
- 磁流体动力学 /
- 激波 /
- 高斯界面
Based on ideal compressible magnetohydrodynamics (MHD) equations, the interface instabilities induced by the interaction between planar shock wave and the light gas (Helium) cylinder under the influence of the magnetic fields with different directions are investigated numerically by using the CTU(corner transport upwind)+CT (constrained transport) algorithm. The numerical results elucidate the evolution of flow field characteristics and wave structures with and without magnetic field. Moreover, we examine the influence of the magnetic field direction on a characteristic scales (including the length, height and width of the central axis of gas cylinder), as well as the volume compressibility. Then, the mechanism of the magnetic field direction affecting the interface instability is studied in depth by integrating the analyses of the circulation, energy, velocity and magnetic force distribution within the flow field. The core of this study, is to explore the suppression mechanism of interface instability by magnetic field force. The results show that the magnetic pressure plays a crucial role in driving vorticity away from the interface, thereby reducing its deposition on the density interface. Simultaneously, it adheres to the divided vortex layer, thereby effectively isolating the influence of Richtmyer-Meshkov instability on the interface. On the other hand, the magnetic tension adheres to the separated vortex layer, and its direction is opposite to that of the vorticity generated by the shear of interface velocity. This action effectively suppresses the Kelvin-Helmholtz instability and the rolling-up of vortices on the density interface. Additionally, under the control of a longitudinal magnetic field, the direction of magnetic tension is opposite to the direction of the central jet, effectively suppressing the development of Rayleigh-Taylor instability.[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[2] Meshkov E E 1969 Fluid Dyn. 4 101
[3] Kelvin L 1871 Philos. Mag. 42 362Google Scholar
[4] Helmholtz H V 1868 Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin 23 215
[5] Rayleigh L 1882 Proc. R. Math. Soc. s1-14 170Google Scholar
[6] Taylor S G 1950 Proc. R Soc. London Ser. A 201 192Google Scholar
[7] Zheng C, Zhang H H, Chen Z H, Wu W T, Sha S 2019 Phys. Fluids 31 086104Google Scholar
[8] 林震亚, 张焕好, 陈志华, 刘 迎 2017 爆炸与冲击 37 748Google Scholar
Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explo. Shock Waves 37 748Google Scholar
[9] Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar
[10] Jacobs J 1993 Phys. Fluids 5 2239Google Scholar
[11] Layes G, Metayer O L 2007 Phys. Fluids 19 042105Google Scholar
[12] Jacobs J and Krivets V 2005 Phys. Fluids 17 034105Google Scholar
[13] Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar
[14] Wang X S, Yang D G, Wu J Q, Luo X S 2015 Phys. Fluids 27 064104Google Scholar
[15] Bai J S, Zou L Y, Wang T, Liu K, Huang W B, Liu J G, Li P, Tan D W, Liu C L 2010 Phys. Rev. E 82 056318Google Scholar
[16] Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar
[17] Luo X S, Ding J C, Wang M H, Zhai Z G, Si T 2015 Phys. Fluids 27 091702Google Scholar
[18] Lei F, Ding J C, Si T, Zhai Z G, Luo X S 2017 J. Fluid Mech. 826 819Google Scholar
[19] Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar
[20] Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101Google Scholar
[21] 李冬冬, 王革, 张斌 2018 67 184702Google Scholar
Li D D, Wang G, Zhang B 2018 Acta Phys. Sin. 67 184702Google Scholar
[22] Guo X, Zhai Z G, Si T, Luo X S 2019 Phys. Rev. Fluids 4 092001(R
[23] 王显圣, 司廷, 罗喜盛, 杨基明 2012 力学学报 44 664Google Scholar
Wang X S, Si T, Luo X S, Yang J M 2012 Acta Mech. Sin. 44 664Google Scholar
[24] 张升博, 张焕好, 陈志华, 郑纯 2023 72 105202Google Scholar
Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202Google Scholar
[25] Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Phys. Plasmas 30 022107Google Scholar
[26] Samtaney R 2003 Phys. Fluids 15 53Google Scholar
[27] Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar
[28] Sano T 2021 Astrophys. J. 920 29Google Scholar
[29] 李源, 罗喜胜 2014 计算物理 31 659Google Scholar
Li Y, Luo X S 2014 Chin. J. Comput. Phys. 31 659Google Scholar
[30] Qiu Z Y, Wu Z W, Cao J T, Li D 2008 Phys. Plasmas 15 042305Google Scholar
[31] Tapinou K C, Wheatley V, Bond D, Jahn I 2023 Phys. Plasmas 30 022707Google Scholar
[32] Tapinou K C, Wheatley V, Bond D 2023 J. Fluid Mech. 977 A19Google Scholar
[33] Rinderknecht H G, Amendt P, Wilks S, Collins G 2018 Plasma Phys. Controlled Fusion 60 064001Google Scholar
[34] Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar
[35] Gan Y B, Xu A G, Lai H L, Li W, Sun G L, Succi S 2022 J. Fluid Mech. 951 A8Google Scholar
[36] Zhang D J, Xu A G, Zhang Y D, Gan Y B, Li Y J 2022 Phys. Fluids 34 086104Google Scholar
[37] Zhang Y D, Xu A G, Chen F, Lin C D, Wei Z H 2022 AIP Adv. 12 035347Google Scholar
[38] Song J H, Xu A G, Miao l, Chen F, Liu Z P, Wang L F, Wang N F, Hou X 2024 Phys. Fluids 36 016107Google Scholar
[39] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈 2020 69 184701Google Scholar
Sha S, Zhang H H, Chen Z H, Zheng C, Wu W T, Shi Q C 2020 Acta Phys. Sin. 69 184701Google Scholar
[40] Zhang H H, Zheng C, Aubry N, Wu W T, Chen Z H 2020 Phys. Fluids 32 116104Google Scholar
[41] Colella P 1990 J. Comput. Phys. 87 171Google Scholar
[42] Londrillo P, Zanna L D 2004 J. Comput. Phys. 195 17Google Scholar
[43] Shin M, Stone J M, Snyder G F 2008 Astrophys. J. 680 336Google Scholar
[44] Saltzman J 1994 J. Comput. Phys. 115 153Google Scholar
[45] Colella P, Woodward P 1984 J. Comput. Phys. 54 17
[46] Evans C, Hawley J 1988 Astrophys J. 322 659
[47] Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar
[48] Giordano J, Burtschell Y 2006 Phys. Fluids. 18 036102Google Scholar
-
表 1 气体参数
Table 1. Gas parameters.
Gas Density
ρ/(kg·m–3)Specific-heat ratio γ Molar mass
M/(g·mol–1)Speed of sound
cA/(m·s–1)Air 1.176 1.40 28.96 347 He 0.162 1.67 4.00 1021 表 2 不同工况下的初始条件
Table 2. The initial conditions of different cases.
Case a $\beta^{-1}$ Magnetic field direction 1 0.8 0 — 2 0.8 0.0005 Transverse 3 0.8 0.0005 Longitudinal -
[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[2] Meshkov E E 1969 Fluid Dyn. 4 101
[3] Kelvin L 1871 Philos. Mag. 42 362Google Scholar
[4] Helmholtz H V 1868 Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin 23 215
[5] Rayleigh L 1882 Proc. R. Math. Soc. s1-14 170Google Scholar
[6] Taylor S G 1950 Proc. R Soc. London Ser. A 201 192Google Scholar
[7] Zheng C, Zhang H H, Chen Z H, Wu W T, Sha S 2019 Phys. Fluids 31 086104Google Scholar
[8] 林震亚, 张焕好, 陈志华, 刘 迎 2017 爆炸与冲击 37 748Google Scholar
Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explo. Shock Waves 37 748Google Scholar
[9] Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar
[10] Jacobs J 1993 Phys. Fluids 5 2239Google Scholar
[11] Layes G, Metayer O L 2007 Phys. Fluids 19 042105Google Scholar
[12] Jacobs J and Krivets V 2005 Phys. Fluids 17 034105Google Scholar
[13] Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar
[14] Wang X S, Yang D G, Wu J Q, Luo X S 2015 Phys. Fluids 27 064104Google Scholar
[15] Bai J S, Zou L Y, Wang T, Liu K, Huang W B, Liu J G, Li P, Tan D W, Liu C L 2010 Phys. Rev. E 82 056318Google Scholar
[16] Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar
[17] Luo X S, Ding J C, Wang M H, Zhai Z G, Si T 2015 Phys. Fluids 27 091702Google Scholar
[18] Lei F, Ding J C, Si T, Zhai Z G, Luo X S 2017 J. Fluid Mech. 826 819Google Scholar
[19] Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar
[20] Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101Google Scholar
[21] 李冬冬, 王革, 张斌 2018 67 184702Google Scholar
Li D D, Wang G, Zhang B 2018 Acta Phys. Sin. 67 184702Google Scholar
[22] Guo X, Zhai Z G, Si T, Luo X S 2019 Phys. Rev. Fluids 4 092001(R
[23] 王显圣, 司廷, 罗喜盛, 杨基明 2012 力学学报 44 664Google Scholar
Wang X S, Si T, Luo X S, Yang J M 2012 Acta Mech. Sin. 44 664Google Scholar
[24] 张升博, 张焕好, 陈志华, 郑纯 2023 72 105202Google Scholar
Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202Google Scholar
[25] Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Phys. Plasmas 30 022107Google Scholar
[26] Samtaney R 2003 Phys. Fluids 15 53Google Scholar
[27] Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar
[28] Sano T 2021 Astrophys. J. 920 29Google Scholar
[29] 李源, 罗喜胜 2014 计算物理 31 659Google Scholar
Li Y, Luo X S 2014 Chin. J. Comput. Phys. 31 659Google Scholar
[30] Qiu Z Y, Wu Z W, Cao J T, Li D 2008 Phys. Plasmas 15 042305Google Scholar
[31] Tapinou K C, Wheatley V, Bond D, Jahn I 2023 Phys. Plasmas 30 022707Google Scholar
[32] Tapinou K C, Wheatley V, Bond D 2023 J. Fluid Mech. 977 A19Google Scholar
[33] Rinderknecht H G, Amendt P, Wilks S, Collins G 2018 Plasma Phys. Controlled Fusion 60 064001Google Scholar
[34] Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar
[35] Gan Y B, Xu A G, Lai H L, Li W, Sun G L, Succi S 2022 J. Fluid Mech. 951 A8Google Scholar
[36] Zhang D J, Xu A G, Zhang Y D, Gan Y B, Li Y J 2022 Phys. Fluids 34 086104Google Scholar
[37] Zhang Y D, Xu A G, Chen F, Lin C D, Wei Z H 2022 AIP Adv. 12 035347Google Scholar
[38] Song J H, Xu A G, Miao l, Chen F, Liu Z P, Wang L F, Wang N F, Hou X 2024 Phys. Fluids 36 016107Google Scholar
[39] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈 2020 69 184701Google Scholar
Sha S, Zhang H H, Chen Z H, Zheng C, Wu W T, Shi Q C 2020 Acta Phys. Sin. 69 184701Google Scholar
[40] Zhang H H, Zheng C, Aubry N, Wu W T, Chen Z H 2020 Phys. Fluids 32 116104Google Scholar
[41] Colella P 1990 J. Comput. Phys. 87 171Google Scholar
[42] Londrillo P, Zanna L D 2004 J. Comput. Phys. 195 17Google Scholar
[43] Shin M, Stone J M, Snyder G F 2008 Astrophys. J. 680 336Google Scholar
[44] Saltzman J 1994 J. Comput. Phys. 115 153Google Scholar
[45] Colella P, Woodward P 1984 J. Comput. Phys. 54 17
[46] Evans C, Hawley J 1988 Astrophys J. 322 659
[47] Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar
[48] Giordano J, Burtschell Y 2006 Phys. Fluids. 18 036102Google Scholar
计量
- 文章访问数: 1670
- PDF下载量: 24
- 被引次数: 0