Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on of dynamics of particles in the flow filed with intensive gradients

Chen Zhi Yi Shi-He Zhu Yang-Zhu He Lin Quan Peng-Cheng

Citation:

Experimental study on of dynamics of particles in the flow filed with intensive gradients

Chen Zhi, Yi Shi-He, Zhu Yang-Zhu, He Lin, Quan Peng-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The dynamic response of particles in hyper/supersonic flow is one of the key points of techniques using tracer particles, such as particle image velocimetry (PIV). In the literature, it is validated by the single oblique shock response testing. However, particles suffer intensive variation of velocity, density and viscosity, when used to trace and measure the complex flow field in the high speed vehicle engine. To test and validate the dynamics of particles in such a flow field with intensive gradient, in this paper we conduct a series experiments dealing with this issue. The study includes the measurements on the velocity field at the exit of the wind tunnel nozzle to testify the performance of PIV system, the measurements on the oblique shock response of particles in Mach 4.2 and Mach 3.0 supersonic flows over a 10° wedge and a 15° wedge respectively, and measurements on the double oblique shock response of particles in the flow field which is designed to simulate the flow field inside the vehicle engine with gradients and without the influence of expansion wave. Based on the particle dynamic models, the relaxation time, relaxation distance, Stokes numbers of different cases can be gained. And the influence of unstable shock oscillation is analyzed and revised based on image method and statistic analysis. It can be found that the relaxation time and distance increase with the Mach number, given the same wedge degree. However, with the same incoming Mach number, the relaxation time and distance drop when the wedge degree increases. Due to the intensive variation of Reynolds number and viscosity, the results show that in a certain extent particles lose their following ability by 5.7%, while its Stokes number increases by 1%. In the flow condition herein, the Stokes number still meets the requirement of supersonic flow. However the decrease of particle following ability is worth being concerned, especially when using particles in the complex flow field with more intensive gradients.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2012B002), and the Innovation Fund Program for Outstanding Postgraduate Students of NUDT, China (Grant No. B120103).
    [1]

    Xu J L 2012 Adv. Mech. 42 81(in Chinese)[徐惊雷 2012 力学进展 42 81]

    [2]

    Weiss A, Grzona A, Olivier H 2010 Exp. Fluids 49 355

    [3]

    Raffel M, Willert C E, Kompenhans J 1998 Introduction Particle Image Velocimetry: A Practical Guide (Berlin: Springer-Verlag) pp1-12

    [4]

    Haertig J, Smigielski P 1986 Proceedings of the Third International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Calouste Gulbenkian Foundation Lisbon, 1986 p192

    [5]

    Humphreys W M, Rallo R A, Hunter W W, Bartram S M 1993 Proceedings of the 5th International Conference of Laser Anemometry The Netherlands, 1993 p519

    [6]

    Humphreys W M, Bartram S M, Blackshire J 1993 AIAA Paper 93 0411

    [7]

    Lang N 1998 Proceedings of the 8th International Symposium on Flow Visualization, Universit'a degli Studi di Napoli Federico Ⅱ Sorrento, Italy, 1998 p205

    [8]

    Unalmis O H, Hou Y X, Bueno P C, Clemens N T, Dolling D S 2000 AIAA Paper 2000-2450

    [9]

    Haerting J, Havermann M, Rey C, George A 2002 AIAA J. 40 1056

    [10]

    Scarano F, Haertig J 2003 Proceedings of 5th International Symposium on Particle Image Velocimetry Busan, Korea, Sep. 2003

    [11]

    Melling A 1997 Meas. Sci. Technol. 8 1406

    [12]

    Howison J C, Goyne C P 2010 J. Propul. Power 26 514

    [13]

    He L 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[何霖 2012 博士学位论文 (长沙: 国防科学技术大学)]

    [14]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [15]

    He L L, Zhang R F, Ji Y Y 2012 Chin. Phys. B 21 088301

    [16]

    Tedeschi G, Gouin H, Elena M 1999 Exp. Fluids 28 288

    [17]

    Zhao Y X 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[赵玉新 2009 博士学位论文 (长沙: 国防科学技术大学)]

    [18]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3425

    [19]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [20]

    Li Y L, Li J, Dong Q F, Wang M J 2014 Chin. Phys. B 23 063301

    [21]

    Liu W, Andrey E M, Yuri S K 2014 Chin. Phys. B 23 047806

    [22]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [23]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [24]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 56 584

    [25]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [26]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219(in Chinese)[朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [27]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702(in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [28]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703(in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2013 62 084703]

    [29]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918(in Chinese)[何枫, 杨京龙, 沈孟育 2002 51 1918]

  • [1]

    Xu J L 2012 Adv. Mech. 42 81(in Chinese)[徐惊雷 2012 力学进展 42 81]

    [2]

    Weiss A, Grzona A, Olivier H 2010 Exp. Fluids 49 355

    [3]

    Raffel M, Willert C E, Kompenhans J 1998 Introduction Particle Image Velocimetry: A Practical Guide (Berlin: Springer-Verlag) pp1-12

    [4]

    Haertig J, Smigielski P 1986 Proceedings of the Third International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Calouste Gulbenkian Foundation Lisbon, 1986 p192

    [5]

    Humphreys W M, Rallo R A, Hunter W W, Bartram S M 1993 Proceedings of the 5th International Conference of Laser Anemometry The Netherlands, 1993 p519

    [6]

    Humphreys W M, Bartram S M, Blackshire J 1993 AIAA Paper 93 0411

    [7]

    Lang N 1998 Proceedings of the 8th International Symposium on Flow Visualization, Universit'a degli Studi di Napoli Federico Ⅱ Sorrento, Italy, 1998 p205

    [8]

    Unalmis O H, Hou Y X, Bueno P C, Clemens N T, Dolling D S 2000 AIAA Paper 2000-2450

    [9]

    Haerting J, Havermann M, Rey C, George A 2002 AIAA J. 40 1056

    [10]

    Scarano F, Haertig J 2003 Proceedings of 5th International Symposium on Particle Image Velocimetry Busan, Korea, Sep. 2003

    [11]

    Melling A 1997 Meas. Sci. Technol. 8 1406

    [12]

    Howison J C, Goyne C P 2010 J. Propul. Power 26 514

    [13]

    He L 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[何霖 2012 博士学位论文 (长沙: 国防科学技术大学)]

    [14]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [15]

    He L L, Zhang R F, Ji Y Y 2012 Chin. Phys. B 21 088301

    [16]

    Tedeschi G, Gouin H, Elena M 1999 Exp. Fluids 28 288

    [17]

    Zhao Y X 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[赵玉新 2009 博士学位论文 (长沙: 国防科学技术大学)]

    [18]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3425

    [19]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [20]

    Li Y L, Li J, Dong Q F, Wang M J 2014 Chin. Phys. B 23 063301

    [21]

    Liu W, Andrey E M, Yuri S K 2014 Chin. Phys. B 23 047806

    [22]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [23]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [24]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 56 584

    [25]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [26]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219(in Chinese)[朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [27]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702(in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [28]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703(in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2013 62 084703]

    [29]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918(in Chinese)[何枫, 杨京龙, 沈孟育 2002 51 1918]

  • [1] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] Zhang Sheng-Bo, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Influence of different interface component distributions on Richtmyer-Meshkov instability. Acta Physica Sinica, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] Jia Lei-Ming, Wang Zhi-Huan, Wang Shu-Fei, Zhong Wei, Tian Zhou. On theoretical calculation method for two-dimensional planar shock wave refractions. Acta Physica Sinica, 2023, 72(6): 064701. doi: 10.7498/aps.72.20222042
    [4] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi. Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events. Acta Physica Sinica, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [6] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [7] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [8] Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin. Experimental study on flow visualization of hypersonic flat plate boundary layer. Acta Physica Sinica, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [9] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [10] Sun Xiao-Yan, Zhu Jun-Fang. Study of the shock wave induced by closing partial road in traffic flow. Acta Physica Sinica, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [11] Yi Shi-He, Chen Zhi. Review of recent experimental studies of the shock train flow field in the isolator. Acta Physica Sinica, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [12] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [13] Sha Sha, Chen Zhi-Hua, Zhang Huan-Hao, Jiang Xiao-Hai. Numerical investigations on the Schardin's problem. Acta Physica Sinica, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [14] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [15] Wu Qin-Kuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method. Acta Physica Sinica, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [16] Wu Qin-Kuan. The indirect matching solution for a class of shock problems. Acta Physica Sinica, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [17] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  6141
  • PDF Downloads:  627
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2014
  • Accepted Date:  15 May 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map