-
There often occurs traffic accident or road construction in real traffic, which leads to partial road closure. In this paper, we set up a traffic model for the partial road closure. According to the Nagel-Schreckenberg (NS) cellular automata update rules, the road can be separated into cells with the same length of 7.5 m. L = 4000 (corresponding to 30 km) is set to the road length in the simulations. For a larger system size, our simulations show that the results are the same with those presented in the following. In our model, vmax rtial road is closed (for convenience, we define the road length as L1), vmax 2= 2 (corresponding to 54 km/h) in the section of normal road (we define the road length as L2). In our simulations, let L1= L2 = 2000. We would like to mention that changing these parameter values does not have a qualitative influence on the simulation results. The simulation results demonstrate that three stationary phases exist, that is, low density (LD), high density (HD) and shock wave (SW). Two critical average densities are found:the critical point ρcr 1= 3/8 separates the LD phase from the SW phase, and ρcr 2= 1/2 separates the SW phase from the HD phase. We also analyze the relationship between the average flux J and average density ρ. In the LD phase J = 4/3ρ, in the HD phase J= 1 -ρ and J is 0.5 in the SW phase. We investigate the dependence of J on ρ. It is shown that with the increase of ρ, J first increases, at this stage J corresponds to the LD phase. Then J remains to be a constant 0.5 when the critical average density ρcr 1 is reached, and J corresponds to the SW phase (this time,J reaches the maximum value 0.5). One goal of traffic-management strategies is to maximize the flow. We find that the optimal choice of the average density is 3/8 ρρcr 2 is reached, J decreases with the increase of average density, which corresponds to the HD phase. We also obtain the relationship between the shock wave position and the average density by theoretical calculations, i.e. Si = i+4-8ρ, which is in agreement with simulations.
-
Keywords:
- traffic flow /
- shock wave /
- phase transition
[1] Chowdhury D 2000 Phys. Rep. 329 199
[2] Gao H W, Gao Z Y, Xie D F 2011 Acta Phys. Sin. 60 058902 (in Chinese) [郭宏伟, 高自友, 谢东繁 2011 60 058902]
[3] He H D, Lu W Z, Dong L Y 2011 Chin. Phys. B 20 040514
[4] Lakouari N, Ez-Zahraouy H, Benyoussef A 2014 Phys. Lett. A 378 3169
[5] Nagatani T 2014 Physica A 413 352
[6] Tang T Q, Huang H J, Shang H Y 2010 Chin. Phys. B 19 050517
[7] Jia B, Jiang R, Wu Q S 2003 Int. J Mod. Phys. C 14 1295
[8] Zhang L, Du W 2012 J. Wuhan Univ. Tech. 36 886 (in Chinese) [张邻, 杜文 2012 武汉理工大学学报 36 886]
[9] Zhang Ao M H, Gao Z Y 2012 J. Trans. Sys. Engin. Inf. Tech. 12 46 (in Chinese) [张敖木翰, 高自友 2012 交通运输系统工程与信息 12 46]
[10] Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M, Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese) [钱勇生, 曾俊伟, 杜加, 刘宇斐, 王敏, 魏军 2011 60 060505]
[11] Kanai M Phys. Rev. E 2005 72 035102(R)
[12] Yamauchi A, Tanimoto J, Hagishima A, Sagara H 2009 Phys. Rev. E 79 036104
[13] Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 , Physica A 389 5353
[14] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing:Science Press) (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社)]
[15] Li L, Jiang R, Jia B, Zhao X M 2011 T heory and Application of Modern Traffic flow(Vol. 1)-freeway traffic flow (Beijing:Tsinghua University Press) [李力, 姜锐, 贾斌, 赵小梅 2011 现代交通流理论与应用卷I-高速公路交通流 (北京:清华大学出版社)]
[16] Sun D 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of Chian) (in Chinese) [孙舵 2011 博士学位论文 (合肥:中国科学技术大学)]
[17] Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221
[18] Sun X Y, Xie Y B, He Z W, Wang B H 2011 Phys. Lett. A 375 2699
[19] Derrida B, Evans M R, Hakim V 1993 J. Phys. A:Math. Gen. 26 1493
-
[1] Chowdhury D 2000 Phys. Rep. 329 199
[2] Gao H W, Gao Z Y, Xie D F 2011 Acta Phys. Sin. 60 058902 (in Chinese) [郭宏伟, 高自友, 谢东繁 2011 60 058902]
[3] He H D, Lu W Z, Dong L Y 2011 Chin. Phys. B 20 040514
[4] Lakouari N, Ez-Zahraouy H, Benyoussef A 2014 Phys. Lett. A 378 3169
[5] Nagatani T 2014 Physica A 413 352
[6] Tang T Q, Huang H J, Shang H Y 2010 Chin. Phys. B 19 050517
[7] Jia B, Jiang R, Wu Q S 2003 Int. J Mod. Phys. C 14 1295
[8] Zhang L, Du W 2012 J. Wuhan Univ. Tech. 36 886 (in Chinese) [张邻, 杜文 2012 武汉理工大学学报 36 886]
[9] Zhang Ao M H, Gao Z Y 2012 J. Trans. Sys. Engin. Inf. Tech. 12 46 (in Chinese) [张敖木翰, 高自友 2012 交通运输系统工程与信息 12 46]
[10] Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M, Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese) [钱勇生, 曾俊伟, 杜加, 刘宇斐, 王敏, 魏军 2011 60 060505]
[11] Kanai M Phys. Rev. E 2005 72 035102(R)
[12] Yamauchi A, Tanimoto J, Hagishima A, Sagara H 2009 Phys. Rev. E 79 036104
[13] Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 , Physica A 389 5353
[14] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing:Science Press) (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社)]
[15] Li L, Jiang R, Jia B, Zhao X M 2011 T heory and Application of Modern Traffic flow(Vol. 1)-freeway traffic flow (Beijing:Tsinghua University Press) [李力, 姜锐, 贾斌, 赵小梅 2011 现代交通流理论与应用卷I-高速公路交通流 (北京:清华大学出版社)]
[16] Sun D 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of Chian) (in Chinese) [孙舵 2011 博士学位论文 (合肥:中国科学技术大学)]
[17] Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221
[18] Sun X Y, Xie Y B, He Z W, Wang B H 2011 Phys. Lett. A 375 2699
[19] Derrida B, Evans M R, Hakim V 1993 J. Phys. A:Math. Gen. 26 1493
Catalog
Metrics
- Abstract views: 6342
- PDF Downloads: 234
- Cited By: 0