Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect and relational analysis of physical parameters on coalescence-induced self-propelled jumping of droplets

Wang Yu-Hang Yuan Meng Ming Ping-Jian

Citation:

Effect and relational analysis of physical parameters on coalescence-induced self-propelled jumping of droplets

Wang Yu-Hang, Yuan Meng, Ming Ping-Jian
PDF
HTML
Get Citation
  • Coalescence-induced self-propelled jumping of droplets on superhydrophobic surfaces has been widely concerned because of a great number of potential applications such as in the enhancement of condensation heat transfer, self-cleaning and anti-icing. The droplet jumping phenomenon exists in a gas-liquid two-phase system, and the physical parameters of fluid cannot be ignored. However, there are few reports on the influence of physical parameters on droplet jumping dynamics at present. In this paper, the three-dimensional volume-of-fluid method is used to simulate the coalescence-induced self-propelled jumping behaviors of droplets, then the energy terms are studied, and finally the grey relational analysis method is used to calculate the relation degree of the change of physical parameters (the viscosity and the density) to the real jumping velocity and the real solid-liquid contact time at the droplet departure time, respectively. Based on the changing trend of jumping velocity, the process of coalescence-induced self-propelled jumping can be divided into four stages, namely, the expansion of liquid bridge, the impact between the liquid bridge and the surface, the droplet departure from the surface, and the deceleration and oscillation in the air. Under the condition of dimensionless time, the dynamic characteristics of coalescence and jumping of droplets are affected only by Oh number, which is independent of the viscosity and the density. In addition, the change of Oh number only affects the above third stage of droplet departure from the surface. Under the condition of real time, the varied viscosity has no connection with the real time of droplet coalescence, and it only changes the real time of the third stage before droplet jumping. Meanwhile, the dimensionless jumping velocity decreases with Oh number increasing, while the real jumping velocity increases when the viscosity and the density both descend. According to the calculated results of grey relational degree, the relation between the change of viscosity and the real jumping velocity is greater, while the relation between the change of density and the real contact time is greater. This work not only is favorable for a better understanding of droplet jumping, but also provides more ideas and theoretical bases for follow-up relevant studies.
      Corresponding author: Ming Ping-Jian, mingpj@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51479038), the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFP201711), and the China Scholarship Council (Grant No. 202006680020)
    [1]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501Google Scholar

    [2]

    Chen X, Wu J, Ma R, Hua M, Koratkar N, Yao S, Wang Z 2011 Adv. Funct. Mater. 21 4617Google Scholar

    [3]

    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang E N 2013 Nano Lett. 13 179Google Scholar

    [4]

    He M, Ding Y, Chen J, Song Y 2016 ACS Nano 10 9456Google Scholar

    [5]

    Han T, Kwak H J, Kim J H, Kwon J T, Kim M H 2019 Langmuir 35 9093Google Scholar

    [6]

    Hou Y, Yu M, Chen X, Wang Z, Yao S 2015 ACS Nano 9 71Google Scholar

    [7]

    Zhu J, Luo Y, Tian J, Li J, Gao X 2015 ACS Appl. Mater. Interfaces 7 10660Google Scholar

    [8]

    Zhao Y, Luo Y, Zhu J, Li J, Gao X 2015 ACS Appl. Mater. Interfaces 7 11719Google Scholar

    [9]

    Watson G S, Gellender M, Watson J A 2014 Biofouling 30 427Google Scholar

    [10]

    Wisdom K M, Watson J A, Qu X, Liu F, Watson G S, Chen C H 2013 Proc. Natl. Acad. Sci. U. S. A. 110 7992Google Scholar

    [11]

    Chavez R L, Liu F, Feng J J, Chen C H 2016 Appl. Phys. Lett. 109 011601Google Scholar

    [12]

    Boreyko J B, Collier C P 2013 ACS Nano 7 1618Google Scholar

    [13]

    Wiedenheft K F, Guo H A, Qu X, Boreyko J B, Liu F, Zhang K, Eid F, Choudhury A, Li Z, Chen C H 2017 Appl. Phys. Lett. 110 141601Google Scholar

    [14]

    Liu F, Ghigliotti G, Feng J J, Chen C H 2014 J. Fluid Mech. 752 39Google Scholar

    [15]

    Liu F, Ghigliotti G, Feng J J, Chen C H 2014 J. Fluid Mech. 752 22Google Scholar

    [16]

    Farokhirad S, Morris J F, Lee T 2015 Phys. Fluids 27 102102Google Scholar

    [17]

    Farokhirad S, Lee T 2017 Int. J. Multiphase Flow 95 220Google Scholar

    [18]

    Shi Y, Tang G H, Xia H H 2015 Int. J. Heat Mass Transfer 88 445Google Scholar

    [19]

    Wang K, Li R, Liang Q, Jiang R, Zheng Y, Lan Z, Ma X 2017 Appl. Phys. Lett. 111 061603Google Scholar

    [20]

    Wang Y, Ming P 2018 AIP Adv. 8 065320Google Scholar

    [21]

    Wang Y, Ming P 2019 Phys. Fluids 31 122108Google Scholar

    [22]

    Wasserfall J, Figueiredo P, Kneer R, Rohlfs W, Pischke P 2017 Phys. Rev. Fluids 2 123601Google Scholar

    [23]

    Khatir Z, Kubiak K Z, Jimack P K, Mathia T G 2016 Appl. Therm. Eng. 106 1337Google Scholar

    [24]

    Chu F, Yuan Z, Zhang X, Wu X 2018 Int. J. Heat Mass Transfer 121 315Google Scholar

    [25]

    Attarzadeh R, Dolatabadi A 2017 Phys. Fluids 29 012104Google Scholar

    [26]

    Liang Z, Keblinski P 2015 Appl. Phys. Lett. 107 143105Google Scholar

    [27]

    Gao S, Liao Q, Liu W, Liu Z 2018 J. Phys. Chem. Lett. 9 13Google Scholar

    [28]

    Wang Y, Ming P 2021 J. Appl. Phys. 129 014702Google Scholar

    [29]

    刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒 2014 63 086801Google Scholar

    Liu T Q, Sun W, Li X Q, Sun X Y, Ai H R 2014 Acta Phys. Sin. 63 086801Google Scholar

    [30]

    Mouterde T, Nguyen T V, Takahashi H, Clanet C, Shimoyama I, Quéré D 2017 Phys. Rev. Fluids 2 112001Google Scholar

    [31]

    王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇 2020 69 100701Google Scholar

    Wang C Y, Duan Q Q, Zhou K, Yao J, Su M, Fu Y C, Ji J Y, Hong X, Liu X Q, Wang Z Y 2020 Acta Phys. Sin. 69 100701Google Scholar

  • 图 1  计算域的边界条件与网格

    Figure 1.  Boundary conditions and grids of computational domain.

    图 2  不同网格尺寸条件下的最大真实弹跳速度

    Figure 2.  Maximum real jumping velocity with different mesh sizes of core region.

    图 3  不同黏度比条件下液滴的聚并和自弹跳过程 (a), (f), (k) t* = 0.168; (b), (g), (l) t* = 0.604; (c), (h), (m) t* = 1.309; (d), (i), (n) t* = 2.686; (e), (j), (o) t* = 3.257

    Figure 3.  Coalescence and jumping process of droplets with different viscosity ratios: (a), (f), (k) t* = 0.168; (b), (g), (l) t* = 0.604; (c), (h), (m) t* = 1.309; (d), (i), (n) t* = 2.686; (e), (j), (o) t* = 3.257.

    图 4  (a) 不同黏度比时液滴质心处的无量纲弹跳速度; (b) 黏度变化对液滴跳离表面前所经历的各个阶段的无量纲持续时间的影响

    Figure 4.  (a) Dimensionless jumping velocity of droplet with different viscosity ratios; (b) effects of the change of viscosity on the dimensionless duration of each stage prior to droplet jumping.

    图 5  不同黏度比条件下流场的速度矢量图 (a), (d), (g) t* = 1.309; (b), (e), (h) t* = 2.686; (c), (f), (i) t* = 3.257

    Figure 5.  Vectors of flow field with different viscosity ratios: (a), (d), (g) t* = 1.309; (b), (e), (h) t* = 2.686; (c), (f), (i) t* = 3.257.

    图 6  (a) 不同黏度比时聚并自弹跳过程中表面能的变化; (b) 不同黏度比的液滴在跳起时具有的黏性耗散能; (c) 不同黏度比的液滴在跳起时刻具有的动能

    Figure 6.  (a) Surface energy variation with different viscosity ratios during the coalescence and jumping process; (b) viscous dissipation energy of jumping droplets with different viscosity ratios at departure time; (c) kinetic energy of jumping droplets with different viscosity ratios at departure time.

    图 7  不同密度比条件下液滴的聚并和自弹跳过程 (a), (f), (k) t* = 0.168; (b), (g), (l) t* = 0.604; (c), (h), (m) t* = 1.309; (d), (i), (n) t* = 2.686; (e), (j), (o) t* = 3.257

    Figure 7.  Coalescence and jumping process of droplets with different density ratios: (a), (f), (k) t* = 0.168; (b), (g), (l) t* = 0.604; (c), (h), (m) t* = 1.309; (d), (i), (n) t* = 2.686; (e), (j), (o) t* = 3.257.

    图 8  (a) 密度变化对液滴跳离表面前所经历的各个阶段的无量纲持续时间的影响; (b) 密度变化对液滴跳离表面前所经历的各个阶段的真实持续时间的影响; (c)不同密度比时液滴质心处的无量纲弹跳速度

    Figure 8.  (a) Effect of the change of density on the dimensionless duration of each stage prior to droplet jumping; (b) effect of the change of density on the real time of each stage prior to droplet jumping; (c) dimensionless jumping velocity of droplet with different density ratios.

    图 9  (a) 不同密度比时聚并自弹跳过程中表面能的变化; (b) 不同密度比的液滴在跳起时具有的黏性耗散能; (c) 不同密度比的液滴在跳起时具有的动能

    Figure 9.  (a) Surface energy variation with different density ratios during the coalescence and jumping process; (b) viscous dissipation energy of jumping droplets with different density ratios at departure time; (c) kinetic energy of jumping droplets with different density ratios at departure time.

    图 10  不同密度比条件下流场的速度矢量图 (a), (d), (g) t* = 1.309; (b), (e), (h) t* = 2.686; (c), (f), (i) t* = 3.257

    Figure 10.  Vectors of flow field with different density ratios: (a), (d), (g) t* = 1.309; (b), (e), (h) t* = 2.686; (c), (f), (i) t* = 3.257.

    表 1  流体物性参数

    Table 1.  Physical parameters of fluids.

    温度T/℃表面张力系数σ/(N·m–1)液体密度ρl/(kg·m–3)液体黏度μl/(Pa·s)气体密度ρg/(kg·m–3)气体黏度μg/(Pa·s)
    200.0729981.071 × 10–31.191.8 × 10–5
    DownLoad: CSV

    表 2  物性参数变化分别与真实弹跳速度和真实接触时间的关联度

    Table 2.  Relational degree of the change of physical parameters to the real jumping velocity and the real contact time, respectively, at droplet departure time.

    参考序列/比较序列黏度μl密度ρl
    关联度r0i, velocity (弹跳速度)0.7580.684
    关联度r0i, time (接触时间)0.7410.771
    DownLoad: CSV
    Baidu
  • [1]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501Google Scholar

    [2]

    Chen X, Wu J, Ma R, Hua M, Koratkar N, Yao S, Wang Z 2011 Adv. Funct. Mater. 21 4617Google Scholar

    [3]

    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang E N 2013 Nano Lett. 13 179Google Scholar

    [4]

    He M, Ding Y, Chen J, Song Y 2016 ACS Nano 10 9456Google Scholar

    [5]

    Han T, Kwak H J, Kim J H, Kwon J T, Kim M H 2019 Langmuir 35 9093Google Scholar

    [6]

    Hou Y, Yu M, Chen X, Wang Z, Yao S 2015 ACS Nano 9 71Google Scholar

    [7]

    Zhu J, Luo Y, Tian J, Li J, Gao X 2015 ACS Appl. Mater. Interfaces 7 10660Google Scholar

    [8]

    Zhao Y, Luo Y, Zhu J, Li J, Gao X 2015 ACS Appl. Mater. Interfaces 7 11719Google Scholar

    [9]

    Watson G S, Gellender M, Watson J A 2014 Biofouling 30 427Google Scholar

    [10]

    Wisdom K M, Watson J A, Qu X, Liu F, Watson G S, Chen C H 2013 Proc. Natl. Acad. Sci. U. S. A. 110 7992Google Scholar

    [11]

    Chavez R L, Liu F, Feng J J, Chen C H 2016 Appl. Phys. Lett. 109 011601Google Scholar

    [12]

    Boreyko J B, Collier C P 2013 ACS Nano 7 1618Google Scholar

    [13]

    Wiedenheft K F, Guo H A, Qu X, Boreyko J B, Liu F, Zhang K, Eid F, Choudhury A, Li Z, Chen C H 2017 Appl. Phys. Lett. 110 141601Google Scholar

    [14]

    Liu F, Ghigliotti G, Feng J J, Chen C H 2014 J. Fluid Mech. 752 39Google Scholar

    [15]

    Liu F, Ghigliotti G, Feng J J, Chen C H 2014 J. Fluid Mech. 752 22Google Scholar

    [16]

    Farokhirad S, Morris J F, Lee T 2015 Phys. Fluids 27 102102Google Scholar

    [17]

    Farokhirad S, Lee T 2017 Int. J. Multiphase Flow 95 220Google Scholar

    [18]

    Shi Y, Tang G H, Xia H H 2015 Int. J. Heat Mass Transfer 88 445Google Scholar

    [19]

    Wang K, Li R, Liang Q, Jiang R, Zheng Y, Lan Z, Ma X 2017 Appl. Phys. Lett. 111 061603Google Scholar

    [20]

    Wang Y, Ming P 2018 AIP Adv. 8 065320Google Scholar

    [21]

    Wang Y, Ming P 2019 Phys. Fluids 31 122108Google Scholar

    [22]

    Wasserfall J, Figueiredo P, Kneer R, Rohlfs W, Pischke P 2017 Phys. Rev. Fluids 2 123601Google Scholar

    [23]

    Khatir Z, Kubiak K Z, Jimack P K, Mathia T G 2016 Appl. Therm. Eng. 106 1337Google Scholar

    [24]

    Chu F, Yuan Z, Zhang X, Wu X 2018 Int. J. Heat Mass Transfer 121 315Google Scholar

    [25]

    Attarzadeh R, Dolatabadi A 2017 Phys. Fluids 29 012104Google Scholar

    [26]

    Liang Z, Keblinski P 2015 Appl. Phys. Lett. 107 143105Google Scholar

    [27]

    Gao S, Liao Q, Liu W, Liu Z 2018 J. Phys. Chem. Lett. 9 13Google Scholar

    [28]

    Wang Y, Ming P 2021 J. Appl. Phys. 129 014702Google Scholar

    [29]

    刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒 2014 63 086801Google Scholar

    Liu T Q, Sun W, Li X Q, Sun X Y, Ai H R 2014 Acta Phys. Sin. 63 086801Google Scholar

    [30]

    Mouterde T, Nguyen T V, Takahashi H, Clanet C, Shimoyama I, Quéré D 2017 Phys. Rev. Fluids 2 112001Google Scholar

    [31]

    王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇 2020 69 100701Google Scholar

    Wang C Y, Duan Q Q, Zhou K, Yao J, Su M, Fu Y C, Ji J Y, Hong X, Liu X Q, Wang Z Y 2020 Acta Phys. Sin. 69 100701Google Scholar

  • [1] Li Feng-Chao, Fu Yu, Li Chao, Yang Jian-Gang, Hu Chun-Bo. Flowing characteristics of aluminum droplets impacting curved surface. Acta Physica Sinica, 2022, 71(18): 184701. doi: 10.7498/aps.71.20220442
    [2] Liu Xiao-Juan, Li Zhan-Qi, Jin Zhi-Gang, Huang Zhi, Wei Jia-Zheng, Zhao Cun-Lu, Wang Zhan-Tao. Energy conversion during electrically actuated jumping of droplets. Acta Physica Sinica, 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [3] Chun Jiang, Wang Jin-Xuan, Xu Chen, Wen Rong-Fu, Lan Zhong, Ma Xue-Hu. Theoretical model of maximum spreading diameter on superhydrophilic surfaces. Acta Physica Sinica, 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [4] Ye Xin, Shan Yan-Guang. Numerical simulation of modal evolution and flow field structure of vibrating droplets on hydrophobic surface. Acta Physica Sinica, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [5] Wang Kai-Yu, Pang Xiang-Long, Li Xiao-Guang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume. Acta Physica Sinica, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [6] Xu Shao-Feng, Lou Ying-Hou, Wu Yao-Feng, Wang Xiang-Yang, He Ping. Fluid slip over hydrophobic surfaces in microchannels: a dissipative particle dynamics study. Acta Physica Sinica, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [7] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [8] Zheng Zhi-Wei, Li Da-Shu, Qiu Xing-Qi, Cui Yun-Jing. Numerical analysis of hollow droplet impact on a flat surface. Acta Physica Sinica, 2017, 66(1): 014704. doi: 10.7498/aps.66.014704
    [9] Jiao Yun-Long, Liu Xiao-Jun, Pang Ming-Hua, Liu Kun. Analyses of droplet spreading and the movement of wetting line on a solid surface. Acta Physica Sinica, 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [10] Hu Hai-Bao, Wang De-Zheng, Bao Lu-Yao, Wen Jun, Zhang Zhao-Zhu. Maintaining large-scale gas layer by creating wettability difference on surfaces under water. Acta Physica Sinica, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [11] Zhang Ya, Pan Guang, Huang Qiao-Gao. Numerical investigation on drag reduction with hydrophobic surface by lattice Boltzmann method. Acta Physica Sinica, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [12] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [13] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [14] Huang Qiao-Gao, Pan Guang, Song Bao-Wei. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces. Acta Physica Sinica, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [15] Liu Tian-Qing, Sun Wei, Li Xiang-Qin, Sun Xiang-Yu, Ai Hong-Ru. A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces. Acta Physica Sinica, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [16] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [17] Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang. Observation and analysis of drop impact on wetted spherical surfaces with low velocity. Acta Physica Sinica, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [18] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [19] Lan Zhong, Zhu Xia, Peng Ben-Li, Lin Meng, Ma Xue-Hu. The analysis of droplet surface temperature field during dropwise condensation process. Acta Physica Sinica, 2012, 61(15): 150508. doi: 10.7498/aps.61.150508
    [20] Yu Lei, Yu Jian-Zu, Wang Yong-Kun. Measurement and analysis of thermal properties of SiNx thin films. Acta Physica Sinica, 2004, 53(2): 401-405. doi: 10.7498/aps.53.401
Metrics
  • Abstract views:  5321
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2020
  • Accepted Date:  15 January 2021
  • Available Online:  07 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map