搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变

周建臣 耿兴国 林可君 张永建 臧渡洋

引用本文:
Citation:

微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变

周建臣, 耿兴国, 林可君, 张永建, 臧渡洋

Stick-slip transition of a water droplet vibrated on a superhydrophobic surface

Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang
PDF
导出引用
  • 利用高速摄影技术对超疏水表面液滴振动的动态行为进行观测,研究液滴在不同频率下的振动特性. 实验发现,液滴的共振频率满足Rayleigh方程,微液滴在超疏水表面具有自由液滴的振动性质. 在80–200 Hz的驱动频率范围内,接触线出现了明显的固着-移动现象,液滴的振动频率是驱动频率的一半,液滴振动时的形变较大. 当驱动频率大于200 Hz时,接触线基本固着,液滴的振动频率近似等于驱动频率,液滴共振时的形态边缘始终有节点存在. 分析表明,液滴对外界驱动的不同响应与接触线的振荡行为和变形程度密切相关
    We have studied the vibration behavior of a water droplet vibrated on a superhydrophobic surface via a high-speed camera. The resonance frequencies of the droplet satisfy the Rayleigh equation, suggesting that the droplet on a superhydrophobic surface can be regarded as a free droplet. Its real oscillation frequency is half of the driving frequency when it is vibrated at low frequencies(<200 Hz). It shows large shape deformation from a compressed puddle to a stretched spheroid. The three-phase contact line exhibits a stick-slip behavior. However, when the droplet is vibrated at frequencies greater than 200 Hz, the three-phase contact line is pinned to the substrate and the droplet is vibrated at the same frequencies as the external driving frequencies. It is found that the oscillation of the contact line and the large shape deformation of the droplet are responsible for the distinct behavior at low frequency.
    • 基金项目: 国家自然科学基金(批准号:51301139)、教育部博士点新教师基金(批准号:20126102120058)、陕西省自然科学基金(批准号:2012JQ1016)和西北工业大学基础研究基金(批准号:JCY20130147)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301139), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102120058), the Shaanxi Provincial Natural Science Foundation, China (Grant No. 2012JQ1016), and the NPU Foundation for Fundamental Research, China (Grant No. JCY20130147).
    [1]

    Vukasinovic B, Smith M K, A. Glazer 2004 Phys. Fluids. 16 306

    [2]

    Singhal V, Garimella S V, Raman A 2004 Appl Mech Rev. 57 191

    [3]

    Nisisako T, Torri T 2007 Advanced Materials. 19 1489

    [4]

    Mukherjee S, Johnson W L, Rhim W K 2005 Appl. Phys. Lett. 86 014104

    [5]

    Rayleigh J 1879 Proc. R. Soc, London. 29 71

    [6]

    Lamb H 1932 Hydrodynamics (London: Cambridge Univesity)

    [7]

    Ko S H, Lee S J, Kang K H 2009 Appl. Phys. Lett. 94 194102

    [8]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 61 134302]

    [9]

    Beard K V 1984 J. Atmos. Sci. 41 1765

    [10]

    Wilkes E D, Basaran O A 1997 Phys. Fluids. 9 1512

    [11]

    Strani M, Sabetta F 1984 J. Fluid Mech. 141 174

    [12]

    SmithwickIII R W, Boulet J A M 1989 J. Colloid Interface Sci. 130 588

    [13]

    Min J C 2002 Acta Phys. Sin. 51 2730 (in Chinese) [闵敬春 2002 51 2730]

    [14]

    Vukasinovic B, SmithM K, Glezer A 2007 J. Fluid Mech. 587 395

    [15]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [16]

    Li X Y 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [李西营 2010 博士学位论文(大连: 大连理工大学)]

    [17]

    Mettu S, Chauhury M K 2010 Langmuir. 26 8131

    [18]

    Liu J, Zheng K H, Liu Z, H L J, Sun L F 2010 Chin. Phys. B 19 066101

    [19]

    Liu T Q, Sun W, Li X Q, SunX Y, Ai H R 2012 Soft Matter. 20 366

    [20]

    Jiang C G, Shi L T, Wu C W 2012 Chin. Sci. Bull. 57 2264

    [21]

    Xu L, Barcos L, Nagel S R 2007 Phys. Rev. E 76 066311

    [22]

    Baudoin M, Brunet P, Matar O B, Herth E 2012 Appl. Phys. Lett. 100 154102

    [23]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [24]

    Hocking L M 1987 J. Fluid Mech. 179 267

    [25]

    Ting C L, Perlin M 1995 J. Fluid Mech. 295 263

    [26]

    Lyubimov D V, Lyubimova T P, Shklyaev S V 2006 Phys. Fluids. 18 012101

    [27]

    Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E. 14 395

    [28]

    Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J. E 166 7

    [29]

    Ramos S M M 2008 Nucl. Instr. and Meth. in Phys. Res. B 266 3143

    [30]

    Celestini F, Kofman R 2006 Phys. Rev. E 73 041602

    [31]

    Whitehill J, Neild A, Ng T W, Stokes M 2010 Appl. Phys. Lett. 96 053501

    [32]

    Zang D Y, Li F, Geng X G, Lin K J, Clegg P S 2013 Eur. Phys. J. E 36 59

    [33]

    McHale G, Elliott S J, Newton M I, Herbertson D L, Esmer K 2009 Langmuir. 25 529

    [34]

    Wang X D, Peng X F, Li D Z 2003 Sci. China. E 33 625 (in Chinese) [王晓东, 彭晓峰, 李笃中 2003 中国科学 33 625]

    [35]

    Clanet C, Béguin C, Richard D, Quéré D 2004 J. Fluid Mech. 517 199

  • [1]

    Vukasinovic B, Smith M K, A. Glazer 2004 Phys. Fluids. 16 306

    [2]

    Singhal V, Garimella S V, Raman A 2004 Appl Mech Rev. 57 191

    [3]

    Nisisako T, Torri T 2007 Advanced Materials. 19 1489

    [4]

    Mukherjee S, Johnson W L, Rhim W K 2005 Appl. Phys. Lett. 86 014104

    [5]

    Rayleigh J 1879 Proc. R. Soc, London. 29 71

    [6]

    Lamb H 1932 Hydrodynamics (London: Cambridge Univesity)

    [7]

    Ko S H, Lee S J, Kang K H 2009 Appl. Phys. Lett. 94 194102

    [8]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 61 134302]

    [9]

    Beard K V 1984 J. Atmos. Sci. 41 1765

    [10]

    Wilkes E D, Basaran O A 1997 Phys. Fluids. 9 1512

    [11]

    Strani M, Sabetta F 1984 J. Fluid Mech. 141 174

    [12]

    SmithwickIII R W, Boulet J A M 1989 J. Colloid Interface Sci. 130 588

    [13]

    Min J C 2002 Acta Phys. Sin. 51 2730 (in Chinese) [闵敬春 2002 51 2730]

    [14]

    Vukasinovic B, SmithM K, Glezer A 2007 J. Fluid Mech. 587 395

    [15]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [16]

    Li X Y 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [李西营 2010 博士学位论文(大连: 大连理工大学)]

    [17]

    Mettu S, Chauhury M K 2010 Langmuir. 26 8131

    [18]

    Liu J, Zheng K H, Liu Z, H L J, Sun L F 2010 Chin. Phys. B 19 066101

    [19]

    Liu T Q, Sun W, Li X Q, SunX Y, Ai H R 2012 Soft Matter. 20 366

    [20]

    Jiang C G, Shi L T, Wu C W 2012 Chin. Sci. Bull. 57 2264

    [21]

    Xu L, Barcos L, Nagel S R 2007 Phys. Rev. E 76 066311

    [22]

    Baudoin M, Brunet P, Matar O B, Herth E 2012 Appl. Phys. Lett. 100 154102

    [23]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [24]

    Hocking L M 1987 J. Fluid Mech. 179 267

    [25]

    Ting C L, Perlin M 1995 J. Fluid Mech. 295 263

    [26]

    Lyubimov D V, Lyubimova T P, Shklyaev S V 2006 Phys. Fluids. 18 012101

    [27]

    Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E. 14 395

    [28]

    Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J. E 166 7

    [29]

    Ramos S M M 2008 Nucl. Instr. and Meth. in Phys. Res. B 266 3143

    [30]

    Celestini F, Kofman R 2006 Phys. Rev. E 73 041602

    [31]

    Whitehill J, Neild A, Ng T W, Stokes M 2010 Appl. Phys. Lett. 96 053501

    [32]

    Zang D Y, Li F, Geng X G, Lin K J, Clegg P S 2013 Eur. Phys. J. E 36 59

    [33]

    McHale G, Elliott S J, Newton M I, Herbertson D L, Esmer K 2009 Langmuir. 25 529

    [34]

    Wang X D, Peng X F, Li D Z 2003 Sci. China. E 33 625 (in Chinese) [王晓东, 彭晓峰, 李笃中 2003 中国科学 33 625]

    [35]

    Clanet C, Béguin C, Richard D, Quéré D 2004 J. Fluid Mech. 517 199

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制.  , 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟.  , 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 王宇航, 袁猛, 明平剑. 物性参数对液滴的聚并自弹跳的影响及其关联分析.  , 2021, 70(12): 124702. doi: 10.7498/aps.70.20201714
    [4] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系.  , 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [5] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性.  , 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [6] 张东凌, 卢姁, 张铭. 有界大洋对纬向风强迫的响应及共振.  , 2018, 67(8): 089201. doi: 10.7498/aps.67.20172225
    [7] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法.  , 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [8] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [9] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积.  , 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [10] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应.  , 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [11] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动.  , 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [12] 徐升华, 王林伟, 孙祉伟, 王彩霞. 容器内角处流体界面特性与Surface Evolver程序适用性的研究.  , 2012, 61(16): 166801. doi: 10.7498/aps.61.166801
    [13] 王成会, 程建春. 微管内气泡的受迫振动.  , 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [14] 丁佩, 周强, 胡伟琴, 蔡根旺, 梁二军. 利用电介质柱共振器实现电磁响应模式可转变的电磁超介质.  , 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [15] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合.  , 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [16] 张国锋, 卜晶晶. 共振和非共振情况下非简并双光子Tavis-Cummings模型中原子与原子之间的纠缠演化.  , 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462
    [17] 罗诗裕, 李洪涛, 吴木营, 王善进, 凌东雄, 张伟风, 邵明珠. 应变超晶格系统的共振行为及其动力学稳定性.  , 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [18] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究.  , 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [19] 郑敦胜, 郭锡坤. 高激发振动态氰化氢分子的解离研究.  , 2004, 53(10): 3347-3352. doi: 10.7498/aps.53.3347
    [20] 郑敦胜, 吴国祯. 分子高激发振动态的动力学特性研究.  , 2002, 51(10): 2229-2232. doi: 10.7498/aps.51.2229
计量
  • 文章访问数:  6206
  • PDF下载量:  1232
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map