搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电驱动引发液滴弹跳过程中的能量转换

刘小娟 李占琪 金志刚 黄智 魏加争 赵存陆 王战涛

引用本文:
Citation:

电驱动引发液滴弹跳过程中的能量转换

刘小娟, 李占琪, 金志刚, 黄智, 魏加争, 赵存陆, 王战涛

Energy conversion during electrically actuated jumping of droplets

Liu Xiao-Juan, Li Zhan-Qi, Jin Zhi-Gang, Huang Zhi, Wei Jia-Zheng, Zhao Cun-Lu, Wang Zhan-Tao
PDF
HTML
导出引用
  • 许多工业技术如凝结散热和燃料电池等要求实现固液分离, 电润湿是引发液滴从疏水表面脱离的一种有效的方法, 而且方便控制. 电场激励的液滴弹跳依赖于表面能向动能和其他形式能量的转化, 目前尚缺乏对这一过程的深入研究. 本研究利用高速摄像机捕捉了在电润湿激励下疏水表面液滴的弹跳运动, 根据接触角和液滴形态的变化预估了引发液滴弹跳的电压阈值, 并利用自编Matlab程序分析和计算了在液滴脱离表面和反复弹跳过程中各种形式的能量. 结果表明, 液滴质心的动能和势能在液滴脱离表面飞行期间存在明显的耦合关系, 振动动能和表面势能在飞行阶段也存在一定的耦合关系, 液滴黏性引起的内部耗散随着液滴振荡变形的幅度增大, 并随着时间衰减. 由于可以引发液滴振荡变形并制造更多的表面能, 在液滴弹跳中交流脉冲比直流电更高效. 通过揭示电润湿驱动的液滴弹跳过程中能量的转化和耗散机制, 为该技术在固液分离和三维数字微流控中的应用提供了理论参考.
    Many industrial technologies, such as condensation cooling and fuel cells, require solid-liquid separation. Electrowetting is a very effective method of inducing droplets to detach from hydrophobic surfaces, and it is very convenient to control. The jumping of droplets excited by an electric field depends on the conversion of surface energy into kinetic energy and other forms of energy. At present, there is still a lack of in-depth research on this process. In this study, a high-speed camera is used to capture the jumping motion of a droplet on a hydrophobic surface under the actuation of electrowetting, and the threshold voltage that causes the droplet to detach is estimated based on the changes in contact angle and droplet shape. A self-written Matlab program is used to analyze and calculate the various forms of energy in the process of droplets detaching and subsequent bouncing. The results show that there is an obvious coupling relationship between the kinetic energy and potential energy of the droplet’s center of mass during the flight of the droplet from the surface. The vibrational kinetic energy and surface potential energy also show a certain coupling relationship during the flight phase. The internal dissipation caused by the viscosity of the droplet increases with the droplet oscillation amplitude increasing, and decays with time. Because it can cause the droplet to oscillate and deform and create more surface energy, AC pulses are more efficient than direct current in the droplet bounce. By revealing the energy conversion and dissipation mechanism in the process of droplet jumping driven by electrowetting, a theoretical reference is provided for the application of this technology in solid-liquid separation and three-dimensional digital microfluidics.
      通信作者: 王战涛, wzt4505@163.com
    • 基金项目: 广东省普通高校重点领域专项 (批准号: 2020ZDZX084)和中山市2021年基础研究重点项目 (批准号: 2021B2016)资助的课题.
      Corresponding author: Wang Zhan-Tao, wzt4505@163.com
    • Funds: Project supported by the Specific Fund for Key Fields of Guangdong Universities, China (Grant No. 2020ZDZX084) and the Fundamental Research Foundation of Zhongshan City, China (Grant No. 2021B2016).
    [1]

    毕菲菲, 郭亚丽, 沈胜强, 陈 觉先, 李熠桥 2012 61 184702Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Z J 2012 Acta Phys. Sin. 61 184702Google Scholar

    [2]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interf. Sci. 516 86Google Scholar

    [3]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82Google Scholar

    [4]

    Palan V, Shepard W S 2006 J. Power Sources 159 1061Google Scholar

    [5]

    姚朝晖, 钟麟彧 2016 第九届全国流体力学学术会议论文摘要集 中国南京 2016年10月21—23日

    Yao Z H, Zhong L Y 2016 Abstract Collection of Papers of the 9 th National Conference on Fluid Mechanics Nanjing, China, October 21–23, 2016 (in Chinese)

    [6]

    Boreyko J B, Chen C H 2010 Phys. Fluids 22 091110Google Scholar

    [7]

    Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang E N 2014 ACS Nano 8 10352Google Scholar

    [8]

    Li X, Jiang Y, Jiang Z, Li Y, Wen C, Lian J 2019 Appl. Surf. Sci. 492 349Google Scholar

    [9]

    Pinchasik B E, Wang H, Möhwald H, Asanuma H 2016 Adv. Mater. Inter. 3 1600722Google Scholar

    [10]

    Baratian D, Dey R, Hoek H, Ende D V D, Mugele, F 2018 Phys. Rev. Lett. 120 214502Google Scholar

    [11]

    Lee S J, Lee S, and Kang K H 2011 J. Visual. 14 259Google Scholar

    [12]

    Raman K A, Jaiman R K, Lee T S, Low H T 2016 Int. J. Heat Mass Tran. 99 805Google Scholar

    [13]

    Wang Z, Ende D V D, Pit A M, Lagraauw R, Wijnperlé D, Mugele F 2017 Soft Matter. 13 4856Google Scholar

    [14]

    Hong J, Kim Y K, Won D J, Kim J, Lee, S J 2015 Sci. Rep. 5 1

    [15]

    Mugele F, Baret J C 2005 J. Phys. Cond. Matter 17 R705Google Scholar

    [16]

    Vallet M, Berge B, Vovelle L 1996 Polymer 37 2465Google Scholar

    [17]

    Cho S K, Moon H, Kim C J 2003 J. Microelectromechanical Sys. 12 70Google Scholar

    [18]

    Li J, Kim C J 2020 Lab Chip 20 1705Google Scholar

    [19]

    Zhang K X, Li Z, Chen S 2019 Phys. Fluids 31 081703Google Scholar

    [20]

    Vo Q, Tran T 2019 Phys. Rev. Lett. 123 024502Google Scholar

    [21]

    Wang Q G, Xu M, Wan C, Gu J P, Hu N, Lyu J F, Yao W 2020 Langmuir 36 8152Google Scholar

    [22]

    Burkhart C T, Maki K L, Schertzer M J 2020 Langmuir 36 8129Google Scholar

    [23]

    Torkkeli, A 2003 Ph. D. Dissertation (Helsinki: VTT Technical Research Centre of Finland)

    [24]

    Yi U C, Kim C J 2006 J. Micromech. Microeng. 16 2053Google Scholar

    [25]

    Cavalli A, Preston D J, Tio E, Martin D W, Miljkovic N, Wang E N, Miljkovic F, Bush J W M 2016 Phys. Fluids 28 866

    [26]

    周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 63 216801Google Scholar

    Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar

    [27]

    Oh J M, Ko S H, Kang K H 2008 Langmuir 24 8379Google Scholar

    [28]

    Lee J, Park J K, Hong J, Lee S J, Kang K H, Hwang H J 2014 Phys. Rev. E 90 033017Google Scholar

    [29]

    Moláček J, Bush J W M 2012 Phys. Fluids 24 127103Google Scholar

    [30]

    Thoraval M J, Thoroddsen S T 2013 Phys. Rev. E 88 061001Google Scholar

    [31]

    De Ruiter J, Lagraauw R, Van Den Ende D, Mugele F 2015 Nat. Phys. 11 48Google Scholar

  • 图 1  实验装置示意图. 左边是实验装置, 右边是共面电极的设计图, 黑色为驱动电极, 白色为参照电极

    Fig. 1.  Schematic diagram of the experimental setup. The left is the experimental setup, the right is the design diagram of the coplanar electrode, the black is the driving electrode and the white is the reference electrode.

    图 2  250 V直流电压激励下液滴的变形和弹跳, 从左至右分别为液滴在激励前, 激励中和激励移除以后的状态

    Fig. 2.  The deformation and bouncing of the droplet under the excitation of 250 V DC voltage, from left to right are the states of the droplet before excitation, during excitation and after excitation removal.

    图 3  电润湿激励下的液滴变形和弹跳, 从左向右每帧间隔为1 ms

    Fig. 3.  Droplet deformation and jumping under electrowetting excitation, the interval between two adjacent images is 1 ms.

    图 4  无量纲化的液滴弹跳高度(蓝色)和形变因子(红色)随400 V交流正弦波(10 kHz)脉冲长度的变化, 绿色直线代表直流激励下的弹跳高度

    Fig. 4.  The dimensionless droplet jumping height (blue) and deformation factor (red) as a function of 400 V sine wave (10 kHz) pulse duration. The green straight line represents the bounce height under DC actuation.

    图 5  液滴在电润湿作用下界面能(空心圆圈)以及移除电压以后的界面能(实心方块), Rb 代表液滴球缺的底面半径. 两条曲线上相同的Rb对应的两点具有同样的形状, 同一条曲线上不同的点具有相同的固-液界面张力${\gamma }_{\rm SL}$. 注意液滴的界面能和底面半径均经过了无量纲处理

    Fig. 5.  The interfacial energies of the droplet under electrowetting (open circles) and after removing the voltage (solid squares), the X-axis represents the base radius of the droplet. The same abscissa (Rb) represents the same droplet shape, and different points on the same curve have the same solid-liquid interfacial tension. Note that both the interfacial energy and base radius of the droplet are dimensionless.

    图 6  液滴质心高度和表面积在液滴弹跳过程中随时间的变化

    Fig. 6.  Variation of droplet centroid height and surface area with time during droplet bouncing.

    图 7  液滴在弹跳过程中质心能量随时间的变化, 其中液滴质心的动能(红色)和势能(蓝色)是分别结合实验数据利用方程(10)和(11)计算得出, 质心的质心总能量(黑色)是以上两部分的总和

    Fig. 7.  Variation of the droplet centroid energy with time during the bouncing process. The kinetic energy (red) and potential energy (blue) of the droplet are calculated using Eqs. (10) and (11) based on experimental data, respectively, and the total energy (black) of the centroid is the sum.

    图 8  液滴的振动能量转化图谱, 其中振动动能(粉色)和振动势能(蓝绿)分别是结合实验数据利用方程(13)和(15)计算得出, 液滴的振动总能量(紫色)是以上两部分之和

    Fig. 8.  Vibrational energy conversion spectrum of droplet. The vibrational kinetic energy (pink) and vibrational potential energy (blue-green) are calculated using Eqs. (13) and (15) based on experimental data, respectively. The total vibrational energy (purple) of the droplet is the sum.

    图 9  液滴在多个弹跳周期中的总体能量演化, 其中内部耗散是结合实验数据利用方程(17)计算得出

    Fig. 9.  Overall energy evolution of a droplet over multiple bounce cycles. The internal dissipation is calculated using Eq.(17) in combination with experimental data.

    Baidu
  • [1]

    毕菲菲, 郭亚丽, 沈胜强, 陈 觉先, 李熠桥 2012 61 184702Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Z J 2012 Acta Phys. Sin. 61 184702Google Scholar

    [2]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interf. Sci. 516 86Google Scholar

    [3]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82Google Scholar

    [4]

    Palan V, Shepard W S 2006 J. Power Sources 159 1061Google Scholar

    [5]

    姚朝晖, 钟麟彧 2016 第九届全国流体力学学术会议论文摘要集 中国南京 2016年10月21—23日

    Yao Z H, Zhong L Y 2016 Abstract Collection of Papers of the 9 th National Conference on Fluid Mechanics Nanjing, China, October 21–23, 2016 (in Chinese)

    [6]

    Boreyko J B, Chen C H 2010 Phys. Fluids 22 091110Google Scholar

    [7]

    Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang E N 2014 ACS Nano 8 10352Google Scholar

    [8]

    Li X, Jiang Y, Jiang Z, Li Y, Wen C, Lian J 2019 Appl. Surf. Sci. 492 349Google Scholar

    [9]

    Pinchasik B E, Wang H, Möhwald H, Asanuma H 2016 Adv. Mater. Inter. 3 1600722Google Scholar

    [10]

    Baratian D, Dey R, Hoek H, Ende D V D, Mugele, F 2018 Phys. Rev. Lett. 120 214502Google Scholar

    [11]

    Lee S J, Lee S, and Kang K H 2011 J. Visual. 14 259Google Scholar

    [12]

    Raman K A, Jaiman R K, Lee T S, Low H T 2016 Int. J. Heat Mass Tran. 99 805Google Scholar

    [13]

    Wang Z, Ende D V D, Pit A M, Lagraauw R, Wijnperlé D, Mugele F 2017 Soft Matter. 13 4856Google Scholar

    [14]

    Hong J, Kim Y K, Won D J, Kim J, Lee, S J 2015 Sci. Rep. 5 1

    [15]

    Mugele F, Baret J C 2005 J. Phys. Cond. Matter 17 R705Google Scholar

    [16]

    Vallet M, Berge B, Vovelle L 1996 Polymer 37 2465Google Scholar

    [17]

    Cho S K, Moon H, Kim C J 2003 J. Microelectromechanical Sys. 12 70Google Scholar

    [18]

    Li J, Kim C J 2020 Lab Chip 20 1705Google Scholar

    [19]

    Zhang K X, Li Z, Chen S 2019 Phys. Fluids 31 081703Google Scholar

    [20]

    Vo Q, Tran T 2019 Phys. Rev. Lett. 123 024502Google Scholar

    [21]

    Wang Q G, Xu M, Wan C, Gu J P, Hu N, Lyu J F, Yao W 2020 Langmuir 36 8152Google Scholar

    [22]

    Burkhart C T, Maki K L, Schertzer M J 2020 Langmuir 36 8129Google Scholar

    [23]

    Torkkeli, A 2003 Ph. D. Dissertation (Helsinki: VTT Technical Research Centre of Finland)

    [24]

    Yi U C, Kim C J 2006 J. Micromech. Microeng. 16 2053Google Scholar

    [25]

    Cavalli A, Preston D J, Tio E, Martin D W, Miljkovic N, Wang E N, Miljkovic F, Bush J W M 2016 Phys. Fluids 28 866

    [26]

    周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 63 216801Google Scholar

    Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar

    [27]

    Oh J M, Ko S H, Kang K H 2008 Langmuir 24 8379Google Scholar

    [28]

    Lee J, Park J K, Hong J, Lee S J, Kang K H, Hwang H J 2014 Phys. Rev. E 90 033017Google Scholar

    [29]

    Moláček J, Bush J W M 2012 Phys. Fluids 24 127103Google Scholar

    [30]

    Thoraval M J, Thoroddsen S T 2013 Phys. Rev. E 88 061001Google Scholar

    [31]

    De Ruiter J, Lagraauw R, Van Den Ende D, Mugele F 2015 Nat. Phys. 11 48Google Scholar

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 任翠翠, 尹相国. 耗散诱导的非厄米边缘爆发重现.  , 2023, 72(16): 160501. doi: 10.7498/aps.72.20230338
    [3] 刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富. 电润湿电子纸显示应用物理研究概述与进展.  , 2023, 72(20): 208501. doi: 10.7498/aps.72.20230837
    [4] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散.  , 2020, 69(8): 080302. doi: 10.7498/aps.69.20200025
    [5] 谢娜, 张宁, 赵瑞, 陈陶, 郝丽丽, 徐荣青. 交流作用下电润湿液体透镜动态过程的测试与分析.  , 2016, 65(22): 224202. doi: 10.7498/aps.65.224202
    [6] 宋健, 杨联贵, 刘全生. 缓变下垫面和耗散作用的非线性Rossby波.  , 2014, 63(6): 060401. doi: 10.7498/aps.63.060401
    [7] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究.  , 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [8] 钟双英, 刘崧, 胡淑娟. 致密双星后牛顿偏心轨道的引力波研究.  , 2013, 62(23): 230401. doi: 10.7498/aps.62.230401
    [9] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性.  , 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [10] 王参军. 基因转录调控系统中的色噪声诱导转化研究.  , 2012, 61(1): 010503. doi: 10.7498/aps.61.010503
    [11] 刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立. 关于部分偏振光能量传递和偏振态的光线椭圆分析方法.  , 2012, 61(13): 134201. doi: 10.7498/aps.61.134201
    [12] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱.  , 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [14] 柳雄斌, 过增元. 换热器性能分析新方法.  , 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [15] 张涛. 光与电子之间能量交换的一个诱因.  , 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象.  , 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [17] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正.  , 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [18] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [19] 舒 瑜, 张建民, 徐可为. Pt(110)表面自吸附原子能量和力的改进分析型嵌入原子法分析.  , 2006, 55(8): 4103-4110. doi: 10.7498/aps.55.4103
    [20] 王忠纯. 介观耗散传输线的量子化.  , 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
计量
  • 文章访问数:  4783
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-02-05
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map