-
从纳米Ag颗粒表面等离子激元光学及表面高能电场特性两方面入手, 较为系统地研究了周围介质的导电特性对表面等离子激元的影响. 通过对复合薄膜紫外-可见-近红外光谱及表面增强拉曼散射光谱的分析, 指出绝缘性的Al2O3介质薄膜能够起到良好的表面电场定域效果, 且不会引入附加的光吸收损失; 而导电性的ITO薄膜则会引入表面价电子的溢出损失, 加速了表面电场的衰逝, 同时引起长波方向上显著的光吸收损失. 研究还表明致密的Al2O3介质薄膜能够起到良好的屏蔽作用, 且纳米Ag颗粒表面等离子激元特性仅受最近邻材料特性的影响. 研究结果为在硅基薄膜太阳电池中实现对纳米Ag颗粒的阻挡、 寄生光吸收损失的降低以及表面高能电场的利用, 提供了一条有效的解决途径.In this article, we investigate the optical and electrical properties of surface plasmon polariton of Ag nanoparticles influenced by surrounding medium with different conductivities. Ultraviolet-visible infrared spectra and surface enhanced Raman scattering show that when the Al2O3 films are used as a surrounding medium, the optical loss caused by surface plasmon polariton of Ag nanoparticles will be reduced and the surface electromagnetic (EM) field will be enhanced, while conductive substrate may lead to the surface plasmons transmitting along the substrate layer then reduce the EM field and enhance the optical absorption. This property provides an effective approach to the use of optical and electrical properties of surface plasmon polariton in thin film solar cells when a thin film of Al2O3 is added as a cover layer.
-
Keywords:
- surface plasmon polariton /
- dielectric layer /
- optical property /
- surface electromagnetic field
[1] Catchple K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[2] Derkacs D, Lim S H, Matheu P, Mar W, Yu E T 2006 Appl. Phys. Lett. 89 093103
[3] Atwater H A, Polman A 2010 Nature Mater. 9 205
[4] Coffa S, Poate J M, Jacobson D C 1992 Phys. Rev. B 45 8355
[5] Beck F J, Mokkapati S, Polman A, Catchpole K R 2010 Appl. Phys. Lett. 96 033113
[6] Moulin E, Sukmanowski J, Luo P, Carius R, Royer F X, Stiebig H 2008 J. Non-Cryst. Solids 354 2488
[7] Beck F J, Polman A, Catchpole K R 2009 J. Appl. Phys. 105 114310
[8] Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485
[9] Weimer W A, Dyer M J 2001 Appl. Phys. Lett. 79 3164
[10] Meier M, Wokaum A, Vo-Dinh T 1985 J. Phys. Chem. 89 1843
[11] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 赵颖 2010 59 2753]
[12] Link S, EI-Sayed M A 1999 J. Phys. Chem. B 103 4212
[13] Brack M 1993 Rev. Mod. Phys. 65 677
[14] Weick G, Ingold G L, Jalabert R A, Weinmann D 2006 Phys. Rev. B 74 165421
-
[1] Catchple K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[2] Derkacs D, Lim S H, Matheu P, Mar W, Yu E T 2006 Appl. Phys. Lett. 89 093103
[3] Atwater H A, Polman A 2010 Nature Mater. 9 205
[4] Coffa S, Poate J M, Jacobson D C 1992 Phys. Rev. B 45 8355
[5] Beck F J, Mokkapati S, Polman A, Catchpole K R 2010 Appl. Phys. Lett. 96 033113
[6] Moulin E, Sukmanowski J, Luo P, Carius R, Royer F X, Stiebig H 2008 J. Non-Cryst. Solids 354 2488
[7] Beck F J, Polman A, Catchpole K R 2009 J. Appl. Phys. 105 114310
[8] Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485
[9] Weimer W A, Dyer M J 2001 Appl. Phys. Lett. 79 3164
[10] Meier M, Wokaum A, Vo-Dinh T 1985 J. Phys. Chem. 89 1843
[11] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 赵颖 2010 59 2753]
[12] Link S, EI-Sayed M A 1999 J. Phys. Chem. B 103 4212
[13] Brack M 1993 Rev. Mod. Phys. 65 677
[14] Weick G, Ingold G L, Jalabert R A, Weinmann D 2006 Phys. Rev. B 74 165421
计量
- 文章访问数: 10068
- PDF下载量: 707
- 被引次数: 0