Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation and verification for energetic proton energy deposition in spallation target

Zhou Bin Yu Quan-Zhi Hu Zhi-Liang Chen Liang Zhang Xue-Ying Liang Tian-Jiao

Citation:

Calculation and verification for energetic proton energy deposition in spallation target

Zhou Bin, Yu Quan-Zhi, Hu Zhi-Liang, Chen Liang, Zhang Xue-Ying, Liang Tian-Jiao
PDF
HTML
Get Citation
  • Energy deposition in spallation target induced by energetic protons is the foundation and the premise of the spallation target research. In this paper, several intra-nuclear cascade models including BERTINI, ISABEL, CEM2K and INCL4 contained in MCNPX package, together with FLUKA and PHITS Monte Carlo codes are used to calculate the energy deposition in lead (Pb) and tungsten (W) spallation target impinged by 800, 1000, and 1200 MeV protons. The contributions of different particles to the total energy deposition in the Pb target are obtained and compared with each other as well. The energy deposition distribution caused by 250 MeV protons in the W target is measured with thermoluminescence detectors (TLDs). The results indicate that the calculations from the MCNPX accord with experimental data, verifying that the Monte Carlo code has a high reliability for energy deposition simulation.
      Corresponding author: Yu Quan-Zhi, qzhyu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91226107, 11575289) and the Chinese Academy of Sciences Key Technology Talent Program
    [1]

    Wang F W, Liang T J, Yin W, Yu Q Z, He L H, Tao J Z, Zhu T, Jia X J, Zhang S Y 2013 Sci. China Phys. Mech. Astron. 56 2410Google Scholar

    [2]

    詹文龙, 徐瑚珊 2012 中国科学院院刊 27 375Google Scholar

    Zhan W L, Xu H S 2012 Bul. Ch. Acad. Sci. 27 375Google Scholar

    [3]

    于全芝, 殷雯, 梁天骄 2011 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [4]

    Pelowitz D B 2005 MCNPX User’s Manual version 2.5.0 (Los Alamos: Los Alamos National Laboratory)

    [5]

    Tatsuhiko S, Koji N, Norihiro M, Shintaro H, Yosuke I, Shusaku N, Tatsuhiko O, Hiroshi I, Hiroshi N, Tokio F, Keisuke O, Tetsuya K, Satoshi C 2013 J. Nucl. Sci. Technol. 50 913Google Scholar

    [6]

    Alfredo F, Paola R S, Alberto F, Johannes R FLUKA: A Multi-particle Transport Code (Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN))

    [7]

    Belyakov-Bodin V I, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1990 Nucl. Instr. Meth. A 295 140Google Scholar

    [8]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1992 Nucl. Instr. Meth. A 314 508Google Scholar

    [9]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Chuvilo I V, Sherstnev V A 1993 Nucl. Instr. Meth. A 335 30Google Scholar

    [10]

    Belyakov-Bodin V I, Azhgirey I L, Degtyarev I I 2007 Nucl. Instr. Meth. A 572 935Google Scholar

    [11]

    Bauer G S, Spitzer H, Holzen G V, Ni L, Hastings J 1998 14th Meeting of the Int. Collaboration on Advanced Neutron Sources, Uitica I L USA, June 14–19, 1998 p229

    [12]

    Filges D, Neef R D, Schaal H 1998 Proc. of the Fourth Workshop on Simulating Accelerator Radiation Environments, Konxville TN USA, September 14–16, 1998 p221

    [13]

    Tietze A 2001 Ph. D. Dissertation (Wuppertal: University of Wuppertal)

    [14]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instr. Meth. A 488 11Google Scholar

    [15]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Weinheim: WILEY-VCH)

    [16]

    奥伯霍弗, 沙尔曼著 (张彤译) 1988 应用热释光剂量学(北京: 中国计量出版社)

    Oberhofer M, Scharmann A (translated by Zhang T) 1988 The Applied Thermoluminescence Dosimetry (Beijing: China Metrology Press)(in Chinese)

    [17]

    赵建兴, 王峰, 唐开勇, 李海俊, 刘大海, 肖无云, 崔辉 2011 核技术 34 103

    Zhao J X, Wang F, Tang K Y, Li H J, Liu D H, Xiao W Y, Cui H 2011 J. Nucl. Tech. 34 103

    [18]

    Massillon-JL G, Gamboa-deBuen I, Brandan M E 2007 J. Phys. D: Appl. Phys. 40 2584Google Scholar

    [19]

    Bilski P, Berger T, Hajek M, Reitz G 2011 Radi Meas. 46 1728Google Scholar

    [20]

    James F Z, http://www.srim.org [2009]

  • 图 1  (a)不同模拟程序对铅靶总能量沉积计算的对比; (b) 铅靶中能量沉积线性密度的轴向分布

    Figure 1.  (a) Comparison of total energy deposition in lead target calculated by different Monte Carlo codes; (b) axial distribution of linear density of energy deposition in lead target.

    图 2  (a)不同模拟程序对钨靶总能量沉积计算的对比; (b)钨靶中能量沉积线性密度分布

    Figure 2.  (a) Comparison of total energy deposition in tungsten target calculated by different Monte Carlo code; (b) axial distribution of linear density of energy deposition in tungsten target.

    图 3  质子在钨靶中的能量沉积测量示意图

    Figure 3.  Schematic of the energy deposition measurement in a tungsten target incident by protons.

    图 4  第一层TLD的剂量读出值

    Figure 4.  TLD dose readouts at the first layer.

    图 5  不同深度的钨靶中质子的平均能量与水等效LET值

    Figure 5.  Average proton energy in the tungsten target and equivalent LET in water.

    图 6  钨靶中TLD的能量沉积测量值与计算值

    Figure 6.  Energy deposition comparison between measurement and calculation of TLD in tungsten target.

    表 1  CEM2K级联模型计算质子入射铅靶产生的不同粒子对总能量沉积的占比贡献

    Table 1.  The calculated contribution of different particles to the total energy deposition in lead target by CEM2K-Cascade-Mode

    粒子800 MeV1000 MeV1200 MeV
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    全部粒子497.9100572.0100648.7100
    质子413.983.13435.676.15455.070.15
    光子47.59.5474.813.08104.016.03
    π00.20.040.40.060.50.08
    带电π介子(± π)6.61.3313.72.3921.93.37
    13.72.7521.23.7129.04.47
    5.01.018.51.4812.31.90
    氦–32.80.575.10.908.01.23
    α粒子6.11.2310.11.7714.62.26
    中子2.00.402.70.473.30.51
    初级质子
    电离作用
    268.852.73247.948.63233.145.72
    DownLoad: CSV

    表 2  BERTINI, ISABEL, CEM2K与INCL4级联模型计算1000 MeV质子入射铅靶产生的不同粒子对总能量沉积值的占比贡献

    Table 2.  The calculated contribution of different particles to the total energy deposition in lead target by 1000 MeV protons with BERTINI, ISABEL, CEM2K, and INCL4 cascade mode.

    粒子BERTINIISABELCEM2 KINCL4
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    全部粒子580.3100603.0100572.0100.00594.5100
    质子474.081.67493.081.76435.676.15500.684.20
    光子63.710.9876.212.6474.813.0860.710.21
    π00.30.050.30.050.30.060.30.04
    带电π介
    子(± π)
    14.92.5613.92.3113.72.3915.52.60
    6.41.103.70.6221.23.714.00.67
    3.00.521.90.328.51.481.80.30
    氦–30.40.060.10.025.10.900.20.03
    α粒子14.82.5611.81.9610.11.779.11.53
    中子2.90.491.90.322.70.472.50.42
    初级质子电
    离作用
    245.148.06243.647.79247.948.63245.048.06
    DownLoad: CSV
    Baidu
  • [1]

    Wang F W, Liang T J, Yin W, Yu Q Z, He L H, Tao J Z, Zhu T, Jia X J, Zhang S Y 2013 Sci. China Phys. Mech. Astron. 56 2410Google Scholar

    [2]

    詹文龙, 徐瑚珊 2012 中国科学院院刊 27 375Google Scholar

    Zhan W L, Xu H S 2012 Bul. Ch. Acad. Sci. 27 375Google Scholar

    [3]

    于全芝, 殷雯, 梁天骄 2011 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [4]

    Pelowitz D B 2005 MCNPX User’s Manual version 2.5.0 (Los Alamos: Los Alamos National Laboratory)

    [5]

    Tatsuhiko S, Koji N, Norihiro M, Shintaro H, Yosuke I, Shusaku N, Tatsuhiko O, Hiroshi I, Hiroshi N, Tokio F, Keisuke O, Tetsuya K, Satoshi C 2013 J. Nucl. Sci. Technol. 50 913Google Scholar

    [6]

    Alfredo F, Paola R S, Alberto F, Johannes R FLUKA: A Multi-particle Transport Code (Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN))

    [7]

    Belyakov-Bodin V I, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1990 Nucl. Instr. Meth. A 295 140Google Scholar

    [8]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1992 Nucl. Instr. Meth. A 314 508Google Scholar

    [9]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Chuvilo I V, Sherstnev V A 1993 Nucl. Instr. Meth. A 335 30Google Scholar

    [10]

    Belyakov-Bodin V I, Azhgirey I L, Degtyarev I I 2007 Nucl. Instr. Meth. A 572 935Google Scholar

    [11]

    Bauer G S, Spitzer H, Holzen G V, Ni L, Hastings J 1998 14th Meeting of the Int. Collaboration on Advanced Neutron Sources, Uitica I L USA, June 14–19, 1998 p229

    [12]

    Filges D, Neef R D, Schaal H 1998 Proc. of the Fourth Workshop on Simulating Accelerator Radiation Environments, Konxville TN USA, September 14–16, 1998 p221

    [13]

    Tietze A 2001 Ph. D. Dissertation (Wuppertal: University of Wuppertal)

    [14]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instr. Meth. A 488 11Google Scholar

    [15]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Weinheim: WILEY-VCH)

    [16]

    奥伯霍弗, 沙尔曼著 (张彤译) 1988 应用热释光剂量学(北京: 中国计量出版社)

    Oberhofer M, Scharmann A (translated by Zhang T) 1988 The Applied Thermoluminescence Dosimetry (Beijing: China Metrology Press)(in Chinese)

    [17]

    赵建兴, 王峰, 唐开勇, 李海俊, 刘大海, 肖无云, 崔辉 2011 核技术 34 103

    Zhao J X, Wang F, Tang K Y, Li H J, Liu D H, Xiao W Y, Cui H 2011 J. Nucl. Tech. 34 103

    [18]

    Massillon-JL G, Gamboa-deBuen I, Brandan M E 2007 J. Phys. D: Appl. Phys. 40 2584Google Scholar

    [19]

    Bilski P, Berger T, Hajek M, Reitz G 2011 Radi Meas. 46 1728Google Scholar

    [20]

    James F Z, http://www.srim.org [2009]

  • [1] He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao. Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device. Acta Physica Sinica, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [2] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [4] Sheng Liang, Li Yang, Wu Jian, Yuan Yuan, Zhao Ji-Zhen, Zhang Mei, Peng Bo-Dong, Hei Dong-Wei. Nanosecond electrical explosion of twisted aluminum wires. Acta Physica Sinica, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [5] Shi Huan-Tong, Zou Xiao-Bing, Zhao Shen, Zhu Xin-Lei, Wang Xin-Xin. Numerical simulation of energy deposition improvment in electrical wire explosion using a parallel wire. Acta Physica Sinica, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [6] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [7] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [8] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of proton beam spreading for a solid beam stopper double scattering method using Monte Carlo simulation. Acta Physica Sinica, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [9] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of scattering angular distribution of proton using Monte-Carlo method. Acta Physica Sinica, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [10] Fang Mei-Hua, Wei Zhi-Yong, Yang Hao, Cheng Jin-Xing. Nuclear reaction stopping of 400MeV/nucleon 56Fe in water. Acta Physica Sinica, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [11] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [13] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [14] Li Xue-Mei, Shen Bai-Fei, Zha Xue-Jun, Fang Zong-Bao, Zhang Xiao-Mei, Jin Zhang-Ying, Wang Feng-Chao. The energy deposition and propagation of fast ions in ultra-dense plasmas. Acta Physica Sinica, 2006, 55(5): 2313-2321. doi: 10.7498/aps.55.2313
    [15] Li Hua. Monte Carlo simulation of the SRAM single event upset. Acta Physica Sinica, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [16] Ren Li-Ming, Chen Bao-Qin, Tan Zhen-Yu. . Acta Physica Sinica, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
    [17] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [18] Wang De-Zhen, Ma Teng-Cai, Gong Ye. . Acta Physica Sinica, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
    [19] PAN ZHENG-YING, CHEN JIAN-XIN, WU SHI-MING, HUO YU-KUN. MONTE CARLO CALCULATION OF PREFERENTIAL SPUTTE-RING IN MULTI-COMPONENT TARGET. Acta Physica Sinica, 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
    [20] WANG XI-DE, PAN ZHENG-YING, HUANG FA-YANG, XIA RONG. THE MONTE-CARLO SIMULATION OF THE FLUORESCENCE ENHANCING EFFECT IN PIXE. Acta Physica Sinica, 1989, 38(5): 776-783. doi: 10.7498/aps.38.776
Metrics
  • Abstract views:  6959
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2020
  • Accepted Date:  27 October 2020
  • Available Online:  21 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回
Baidu
map