-
基于神光II升级装置激光条件, 利用流体程序、粒子模拟程序和Fokker-Placnck程序, 模拟研究质子快点火中所需质子束的品质以及产生所需质子束的激光条件. 首先根据快点火靶的条件, 利用Fokker-Planck方程模拟快点火所需的质子束的能量范围, 模拟表明当背景等离子密度为300 g/cm3时, 能量为7—12 MeV的质子束适合点火; 当背景等离子体密度为400 g/cm3时, 能量为8—18 MeV的质子束适合点火. 再根据神光II升级装置实验条件研究质子束所需的激光参数, 通过利用粒子模拟程序, 结合流体程序给出的预等离子体, 分别模拟研究了加预等离子体和不加预等离子体两种情况下的质子加速, 在有预等离子体时得到的质子束最大能量约为22 MeV, 没有预等离子体时得到的质子束最大能量为17.5 MeV, 具体分析了两种情况下质子加速的物理机制, 其结果跟等离子体自由膨胀模型结果符合得很好.The proton beam energy deposition and the prodution of proton beams in proton fast ignition are investigated with the fluid program, partice-in-cell program and Fokker-Planck program based on the parameters of Shenguang II upgraded device. Firstly, according to the target parameters of fast ignition, the energy depositions of different energy protons are investigated. It is obtained that the higher the incident proton energy, the higher the surface density that the protons go through, accordingly the longer the proton deposition distance in the same background plasma density. On the assumption that the diameter of the compression core is 20–30 μm, and that the protons deposited in the core give the energy to the background plasma, the energy of the proton required by fast ignition is obtained by Fokker-Planck simulation. Protons with energy of 7–12 MeV are appropriate for ignition when the background plasma density is 300 g/cm3, while 8–18 MeV protons for 400 g/cm3. The background plasma temperatures are both 5 keV in the two cases. Secondly, we use particle-in-cell program to study the proton acceleration with or without preplasma which is given by fluid program with using the laser intensity
$ I = 5.4 \times {10^{19}}{\text{ }}{\rm{W/c}}{{\rm{m}}^2} $ based on the parameters of Shenguang II upgraded device. The laser has 350 J of enegy, 3 ps of Gaussion pluse width and 10 µm of spot radius. The curvature of the target which is 10 µm thick copper coated with 1 µm thick hydrogen plasma, is 500 µm. The maximum proton energy obtained with preplama is 22 MeV, however the maximum proton energy obtained without preplasma is 17.5 MeV. The conversion efficiency from laser to protons is 5.12% with preplasma and 4.15% without preplasma. The conversion efficiency with preplasma is 20% higher than that without preplasma. We also study the mechanisms of the acceleration in the two situations. The freely expanding plasma model is used to explain the acceleration mechanism. The simulated electric field is smaller than that calculated by using the freely expanding plasma model, because some protons are accelerated at the time of plasma expansion, which consumes some electric field. The results of proton energy deposition show that the proton beams that are suitable for fast ignition can be obtained by the Shenguang II upgraded device.-
Keywords:
- proton fast ignition /
- energy deposition /
- proton acceleration
[1] Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar
[2] Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar
[3] Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar
[4] Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar
[5] Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar
[6] Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar
[7] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar
[8] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar
[9] Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar
[10] Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar
[11] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar
[12] Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[13] Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar
[14] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar
[15] Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar
[16] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar
[17] Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar
[18] Key M H 2007 Phys. Plasmas 14 055502Google Scholar
[19] Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar
[20] Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar
[21] Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar
[22] Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar
[23] Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar
[24] Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar
[25] Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar
[26] Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar
[27] 徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar
Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar
[28] Davies J R 2002 Phys. Rev. E 65 026407Google Scholar
[29] Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar
[30] Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar
[31] Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar
[32] Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar
[33] Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar
[34] Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar
[35] Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar
[36] Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar
[37] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar
[38] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 58 363Google Scholar
He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar
[39] 何民卿, 董全力, 盛政明, 张杰 2015 64 105202Google Scholar
He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar
[40] Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar
[41] Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar
[42] Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar
[43] Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar
[44] Denavit J 1979 Phys. Fluids 22 1384Google Scholar
-
图 4 (a) 二维粒子模拟得到的质子能谱图(Ep为质子能量, dN/dEp为单位能量粒子数); (b) 最高质子能随激光能量分布图(EL为入射激光能量, Ep,max为最大质子能量)
Fig. 4. (a) Proton energy spectrum from PIC simulation (Ep is the proton energy, dN/dE is the number of protons per unit energy); (b) the maximum proton energy vs. laser energy (EL is the laser energy, Ep,max is the maximum proton energy).
表 1 二维粒子模拟得到的无预等离子体和有预等离子时质子束品质比较.
Table 1. Proton qualities with preplasma or without preplasma by 2D PIC simulations.
转化效率/% 最高质子能/MeV 质子数/个 (7—18 MeV) 无预等离子体 4.25 17 7.81×1012 有预等离子体 5.12 25 1.01×1013 -
[1] Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar
[2] Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar
[3] Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar
[4] Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar
[5] Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar
[6] Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar
[7] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar
[8] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar
[9] Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar
[10] Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar
[11] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar
[12] Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[13] Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar
[14] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar
[15] Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar
[16] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar
[17] Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar
[18] Key M H 2007 Phys. Plasmas 14 055502Google Scholar
[19] Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar
[20] Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar
[21] Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar
[22] Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar
[23] Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar
[24] Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar
[25] Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar
[26] Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar
[27] 徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar
Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar
[28] Davies J R 2002 Phys. Rev. E 65 026407Google Scholar
[29] Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar
[30] Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar
[31] Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar
[32] Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar
[33] Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar
[34] Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar
[35] Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar
[36] Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar
[37] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar
[38] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 58 363Google Scholar
He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar
[39] 何民卿, 董全力, 盛政明, 张杰 2015 64 105202Google Scholar
He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar
[40] Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar
[41] Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar
[42] Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar
[43] Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar
[44] Denavit J 1979 Phys. Fluids 22 1384Google Scholar
计量
- 文章访问数: 3258
- PDF下载量: 74
- 被引次数: 0