Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical progress and material studies of heavy fermion superconductors

Li Yu Sheng Yu-Tao Yang Yi-Feng

Citation:

Theoretical progress and material studies of heavy fermion superconductors

Li Yu, Sheng Yu-Tao, Yang Yi-Feng
PDF
HTML
Get Citation
  • Heavy fermion superconductors belong to a special class of strongly correlated systems and unconventional superconductors. The emergence of superconductivity in these materials is closely associated with the presence of quantum critical fluctuations. Heavy fermion superconductors of different structures often exhibit distinct competing orders and superconducting phase diagrams, implying sensitive dependence of their electronic structures and pairing mechanism on the crystal symmetry. Here we give a brief introduction on recent theoretical and experimental progress in several different material families. We develop a new phenomenological framework of superconductivity combining the Eliashberg theory, a phenomenological form of quantum critical fluctuations, and strongly correlated band structure calculations for real materials. Our theory provides a unified way for systematic understanding of various heavy fermion superconductors.
      Corresponding author: Yang Yi-Feng, yifeng@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11774401, 11974397), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB33010100), and the China Postdoctoral Science Foundation (Grant No. 2020M670422)
    [1]

    Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar

    [2]

    Liu M, Xu Y, Hu D, Fu Z, Tong N, Chen X, Cheng J, Xie W, Yang Y F 2017 arXiv: 1705.00846

    [3]

    杨义峰 2014 物理 43 80Google Scholar

    Yang Y F 2014 Physics 43 80Google Scholar

    [4]

    李璐 2020 物理 49 595Google Scholar

    Li L 2020 Physics 49 595Google Scholar

    [5]

    刘洋, 曹超, 吴帆, 袁辉球 2020 物理 49 602Google Scholar

    Liu Y, Cao C, Wu F, Yuan H Q 2020 Physics 49 602Google Scholar

    [6]

    Meissner W, Voigt B 1930 Ann. Phys. 399 892Google Scholar

    [7]

    de Haas W J, de Boer J, van der Berg D 1934 Physica 1 1115Google Scholar

    [8]

    Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 12 120

    [9]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [10]

    Alekseevskii N E, Gaidukow Y P 1957 Sov. Phys. JETP 4 807

    [11]

    van den Berg G J 1964 Prog. Low Temp. Phys. 4 194Google Scholar

    [12]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [13]

    李正中 1982 物理 11 101

    Li Z Z 1982 Physics 11 101

    [14]

    张广铭, 于渌 2007 物理 36 434Google Scholar

    Zhang G M, Yu L 2007 Physics 36 434Google Scholar

    [15]

    Yosida K 1966 Phys. Rev. 147 223Google Scholar

    [16]

    Abrikosov A A 1965 Physics Physique Fizika 2 5Google Scholar

    [17]

    Kondo J 1965 Prog. Theor. Phys. 34 204Google Scholar

    [18]

    Anderson P W 1970 J. Phys. C 3 2346Google Scholar

    [19]

    Wilson K G 1975 Rev. Mod. Phys. 47 773Google Scholar

    [20]

    Nozières P 1974 J. Low Temp. Phys. 17 31Google Scholar

    [21]

    Suhl H 1965 Phys. Rev. 138 515Google Scholar

    [22]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99Google Scholar

    [23]

    Kasuya T 1956 Prog. Theor. Phys. 16 58Google Scholar

    [24]

    Yosida K 1957 Phys. Rev. 106 893Google Scholar

    [25]

    Doniach S 1977 Physica B+C 91 231Google Scholar

    [26]

    Barnes S E 1976 J. Phys. F 6 1375Google Scholar

    [27]

    Coleman P 1984 Phys. Rev. B 29 3035Google Scholar

    [28]

    Read N, Newns D M 1983 J. Phys. C 16 3273Google Scholar

    [29]

    Read N, Newns D M, Doniach S 1984 Phys. Rev. B 30 3841Google Scholar

    [30]

    Bickers N E 1987 Rev. Mod. Phys. 59 845Google Scholar

    [31]

    Rice T M, Ueda K 1985 Phys. Rev. Lett. 55 995Google Scholar

    [32]

    Rice T M, Ueda K 1986 Phys. Rev. B 34 6420Google Scholar

    [33]

    Brandow B H 1986 Phys. Rev. B 33 215Google Scholar

    [34]

    Fazekas P, Brandow B H 1987 Phys. Scr. 36 809Google Scholar

    [35]

    Aeppli G, Fisk Z 1992 Comments Condens. Matter Phys. 16 155

    [36]

    Fazekas P 1999 Lecture Notes on Electron Correlation Magnetism (Singapore: World Scientific) p650

    [37]

    Coleman P 2015 Introduction to Many-Body Physics (United Kongdom: Cambridge University Press) p668

    [38]

    Shirer K R, Shockley A C, Dioguardi A P, Crocker J, Lin C H, apRoberts-Warren N, Nisson D M, Klavins P, Cooley J C, Yang Y F, Curro N J 2012 Proc. Natl. Acad. Sci. USA 109 18249Google Scholar

    [39]

    Kummer K, Patil S, Chikina A, Güttler M, Höppner M, Generalov A, Danzenbächer S, Seiro S, Hannaske A, Krellner C, Kucherenko Y, Shi M, Radovic M, Rienks E, Zwicknagl G, Matho K, Allen J W, Laubschat C, Geibel C, Vyalikh D V 2015 Phys. Rev. X 5 011028Google Scholar

    [40]

    Yang Y F, Fisk Z, Lee H O, Thompson J D, Pines D 2008 Nature 454 611Google Scholar

    [41]

    Yang Y F, Pines D 2008 Phys. Rev. Lett. 100 096404Google Scholar

    [42]

    Yang Y F, Urbano R, Curro N J, Pines D, Bauer E D 2009 Phys. Rev. Lett. 103 197004Google Scholar

    [43]

    Yang Y F 2009 Phys. Rev. B 79 241107(R)Google Scholar

    [44]

    Yang Y F, Pines D 2012 Proc. Natl. Acad. Sci. USA 109 18247Google Scholar

    [45]

    Yang Y F 2013 Phys. Rev. B 87 045102Google Scholar

    [46]

    Yang Y F, Pines D 2014 Proc. Natl. Acad. Sci. USA 111 8398Google Scholar

    [47]

    Yang Y F 2015 Phys. Rev. B 92 195131Google Scholar

    [48]

    Yang Y F 2020 Phys. Rev. Res. 2 033105Google Scholar

    [49]

    Yang Y F, Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178Google Scholar

    [50]

    Yang Y F 2016 Rep. Prog. Phys. 79 074501Google Scholar

    [51]

    杨义峰, 谢能, 李宇 2015 物理学进展 79 074501

    Yang Y F, Xie N, Li Y 2015 Prog. Phys. 79 074501

    [52]

    Lonzarich G, Pines D, Yang Y F 2017 Rep. Prog. Phys. 80 024501Google Scholar

    [53]

    Abrikosov A A, Gor'kov L P 1961 Sov. Phys. JETP 12 1243

    [54]

    Maple M B, Fertig W A, Mota A C, de Long L E, Wohlleben D, Titzgerald R 1972 Solid State Commun. 11 829Google Scholar

    [55]

    Bucher E, Maita J P, Hull G W, Fulton R C, Cooper A S 1975 Phys. Rev. B 11 440Google Scholar

    [56]

    Franz W, Grießel A, Steglich F, Wohlleben D 1978 Z. Phys. B 31 7Google Scholar

    [57]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar

    [58]

    Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar

    [59]

    Stewart G R, Fisk Z, Willis J O, Smith J L 1984 Phys. Rev. Lett. 52 679Google Scholar

    [60]

    Palstra T T M, Menovsky A A, van den Berg J, Dirkmaat A J, Kes P H, Nieuwenhuys G J, Mydosh J A 1985 Phys. Rev. Lett. 55 2727Google Scholar

    [61]

    Scheerer G W, Ren Z, Lapertot G, Garbarino G, Jaccard D 2018 Physica B 536 150Google Scholar

    [62]

    Wang H, Guo J, Bauer E D, Sidorov V A, Zhao H, Zhang J, Zhou Y, Wang Z, Cai S, Yang K, Li A, Li X, Li Y, Sun P, Yang Y F, Wu Q, Xiang T, Thompson J D, Sun L L 2018 Phys. Rev. B 97 064514Google Scholar

    [63]

    Ran S, Eckberg C, Ding Q, Furukawa Y, Metz T, Saha S R, Liu I, Zic M, Kim H, Paglione J, Butch N P 2019 Science 365 684Google Scholar

    [64]

    Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 15 1250Google Scholar

    [65]

    杨义峰, 李宇 2015 64 217401Google Scholar

    Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar

    [66]

    Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar

    [67]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [68]

    谢武, 沈斌, 张勇军, 郭春煜, 徐嘉诚, 路欣, 袁辉球 2019 68 177101Google Scholar

    Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta Phys. Sin. 68 177101Google Scholar

    [69]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar

    [70]

    Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y, Matsuda Y 2009 New. J. Phys. 11 055061Google Scholar

    [71]

    Kim D Y, Lin S Z, Weickert F, Kenzelmann M, Bauer E D, Ronning F, Thompson J D, Movshovich R 2016 Phys. Rev. X 6 041059Google Scholar

    [72]

    Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar

    [73]

    Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar

    [74]

    Aoki Y, Tayama T, Sakakibara T, Kuwahara K, Iwasa K, Kohgi M, Higemoto W, MacLaughlin D E, Sugawara H, Sato H 2007 J. Phys. Soc. Jpn. 76 051006Google Scholar

    [75]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383Google Scholar

    [76]

    Akhiezer A I, Pineranchuk I Y 1959 Sov. Phys. JETP 9 605

    [77]

    Kohn W, Luttinger J 1965 Phys. Rev. Lett. 15 524Google Scholar

    [78]

    Berk N F, Schrieffer J R 1966 Phys. Rev. Lett. 17 433Google Scholar

    [79]

    Layzer A, Fay D 1971 Int. J. Magn. 1 135

    [80]

    Leggett A J 1975 Rev. Mod. Phys. 47 331Google Scholar

    [81]

    Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar

    [82]

    Stewart G R 1984 Rev. Mod. Phys. 56 755Google Scholar

    [83]

    Béal-Monod M T, Bourbonnais C, Emery V J 1986 Phys. Rev. B 34 7716Google Scholar

    [84]

    Miyake K, Schmitt-Rink S, Varma C M 1986 Phys. Rev. B 34 6554Google Scholar

    [85]

    Scalapino D J, Loh E, Hirsch J E 1986 Phys. Rev. B 34 8190Google Scholar

    [86]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [87]

    Millis A J, Monien H, Pines D 1990 Phys. Rev. B 42 167Google Scholar

    [88]

    Monthoux P, Balatsky A V, Pines D 1991 Phys. Rev. Lett. 67 3448Google Scholar

    [89]

    Monthoux P, Balatsky A V, Pines D 1992 Phys. Rev. B 46 14803Google Scholar

    [90]

    Monthoux P, Pines D 1992 Phys. Rev. Lett. 69 961Google Scholar

    [91]

    Monthoux P, Pines D 1993 Phys. Rev. B 47 6069Google Scholar

    [92]

    Monthoux P, Lonzarich G G 1999 Phys. Rev. B 59 14598Google Scholar

    [93]

    Monthoux P, Lonzarich G G 2001 Phys. Rev. B 63 054529Google Scholar

    [94]

    Monthoux P, Lonzarich G G 2002 Phys. Rev. B 66 224504Google Scholar

    [95]

    Moriya T, Ueda K 2003 Rep. Prog. Phys. 66 1299Google Scholar

    [96]

    Robinson N J, Johnson P D, Rice T M, Tsvelik A M 2019 Rep. Prog. Phys. 82 126501Google Scholar

    [97]

    Singh N 2020 arXiv: 2006.06335

    [98]

    Fujimori S 2016 J. Phys. Condens. Matter 28 153002Google Scholar

    [99]

    Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, Feng D L 2017 Phys. Rev. B 96 045107Google Scholar

    [100]

    Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S, Feng D L 2018 Phys. Rev. B 97 075149Google Scholar

    [101]

    Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S, Feng D L 2018 Phys. Rev. Lett. 120 066403Google Scholar

    [102]

    张云, 谭世勇, 陈秋云 2020 物理 49 611Google Scholar

    Zhang Y, Tan S Y, Chen Q Y 2020 Physics 49 611Google Scholar

    [103]

    Anisimov V I, Aryasetiawan F, Lichtenstein A 1997 J. Phys. Condens. Matter 9 767Google Scholar

    [104]

    Suzuki M T, Harima H 2010 J. Phys. Soc. Jpn. 79 024705Google Scholar

    [105]

    Zwicknagl G 2016 Rep. Prog. Phys. 79 124501Google Scholar

    [106]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [107]

    Shim J H, Haule K, Kotliar G 2007 Science 318 1615Google Scholar

    [108]

    Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar

    [109]

    Millis A J 1993 Phys. Rev. B 48 7183Google Scholar

    [110]

    Moriya T, Takimoto T 1995 J. Phys. Soc. Jpn. 64 960Google Scholar

    [111]

    Wölfle P, Abrahams E 2011 Phys. Rev. B 84 041101(R)Google Scholar

    [112]

    Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. USA 109 3238Google Scholar

    [113]

    Abrahams E, Schmalian J, Wölfle P 2014 Phys. Rev. B 90 045105Google Scholar

    [114]

    Wölfle P, Schmalian J, Abrahams E 2017 Rep. Prog. Phys. 80 044501Google Scholar

    [115]

    Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar

    [116]

    Si Q, Pixley J H, Nica E, Yamamoto S J, Goswami P, Yu R, Kirchner S 2014 J. Phys. Soc. Jpn. 83 061005Google Scholar

    [117]

    Yang Y F, Pines D, Lonzarich L 2017 Proc. Natl. Acad. Sci. USA 114 6250Google Scholar

    [118]

    Yang Y F 2020 Sci. China-Phys. Mech. Astron. 63 117431Google Scholar

    [119]

    Van Dyke J, Massee F, Allan M P, Davis J C, Petrovic C, Morr D K 2014 Proc. Natl. Acad. Sci. USA 111 11663Google Scholar

    [120]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [121]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [122]

    Varma C M 2012 Rep. Prog. Phys. 75 052501Google Scholar

    [123]

    Ummarino G A 2013 Emergent Phenomena in Condensed Matter (Jülich: Forschungszentrum Jülich GmbH) p13.1–13.36

    [124]

    李宇, 杨义峰 2017 科学通报 62 4068Google Scholar

    Li Y, Yang Y F 2017 Chin. Sci. Bull. 62 4068Google Scholar

    [125]

    Li Y, Liu M, Fu Z, Chen X, Yang F, Yang Y F 2018 Phys. Rev. Lett. 120 217001Google Scholar

    [126]

    Li Y, Wang Q, Xu Y, Xie W, Yang Y F 2019 Phys. Rev. B 100 085132Google Scholar

    [127]

    Xu Y, Sheng Y, Yang Y F 2019 Phys. Rev. Lett. 123 217002Google Scholar

    [128]

    Liu Z, Li Y, Yang Y F 2019 Chin. Phys. B 28 077103Google Scholar

    [129]

    Steglich F 2014 Philos. Mag. 94 3259Google Scholar

    [130]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar

    [131]

    Sigrist M 2005 AIP Conf. Proc. 789 165Google Scholar

    [132]

    Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Jeevan H S, Gegenwart P, Steglich F, Si Q, Yuan H Q 2018 Proc. Natl. Acad. Sci. USA 115 5343Google Scholar

    [133]

    Takenaka T, Mizukami Y, Wilcox J A, Konczykowski M, Seiro S, Geibel C, Tokiwa Y, Kasahara Y, Putzke C, Matsuda Y, Carrington A, Shibauchi T 2017 Phys. Rev. Lett. 119 077001Google Scholar

    [134]

    Yamashita T, Takenaka T, Tokiwa Y, Wilcox J A, Mizukami Y, Terazawa D, Kasahara Y, Kittaka S, Sakakibara T, Konczykowski M, Seiro S, Jeevan H S, Geibel C, Putzke C, Onishi T, Ikeda H, Carrington A, Shibauchi T, Matsuda Y 2017 Sci. Adv. 3 e1601667Google Scholar

    [135]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H, Machida K 2016 Phys. Rev. B 94 054514Google Scholar

    [136]

    Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F, Wahl P 2016 Phys. Rev. B 93 045123Google Scholar

    [137]

    Zwicknagl G, Pulst U 1993 Physica B 186-188 895Google Scholar

    [138]

    Ikeda H, Suzuki M T, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar

    [139]

    Hunt M, Meeson P, Probst P A, Reinders P, Springford M, Assmus W, Sun W 1990 J. Phys. Condens. Matter 2 6859Google Scholar

    [140]

    Hunt M, Messon P, Probst P A, Reinders P, Springford M, Assmus W, Sun W 1990 Physica B 165-166 323Google Scholar

    [141]

    Vasumathi D, Barbiellini B, Manuel A A, Hoffmann L, Jarlborg T, Modler R, Geibel C, Steglich F, Peter M 1997 Phys. Rev. B 55 11714Google Scholar

    [142]

    Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar

    [143]

    Nishiyama S, Miyake K, Varma C M 2013 Phys. Rev. B 88 014510Google Scholar

    [144]

    Eremin I, Zwicknagl G, Thalmeier P, Fulde P 2008 Phys. Rev. Lett. 101 187001Google Scholar

    [145]

    Kitagawa S, Nakamine G, Ishida K, Jeevan H S, Geibel C, Steglich F 2018 Phys. Rev. Lett. 121 157004Google Scholar

    [146]

    Bang Y, Stewart G R 2017 J. Phys. Condens. Matter 29 123003Google Scholar

    [147]

    Tazai R, Kontani H 2018 Phys. Rev. B 98 205107Google Scholar

    [148]

    Tazai R, Kontani H 2019 J. Phys. Soc. Jpn. 88 063701Google Scholar

    [149]

    Holmes A T, Jaccard D, Miyake K 2004 Phys. Rev. B 69 024508Google Scholar

    [150]

    Onishi Y, Miyake K 2000 Physica B 281 191Google Scholar

    [151]

    Onishi Y, Miyake K 2000 J. Phys. Soc. Jpn. 69 3955Google Scholar

    [152]

    Miyake K, Watanabe S 2017 Philos. Mag. 97 3495Google Scholar

    [153]

    Scheerer G W, Ren Z, Watanabe S, Lapertot G, Aoki D, Jaccard D, Miyake K 2018 npj Quantum Materials 3 1Google Scholar

    [154]

    Pourovskii L V, Hansmann P, Ferrero M, Georges A 2014 Phys. Rev. Lett. 112 106407Google Scholar

    [155]

    Stock C, Broholm C, Hudis J, Kang H J, Petrovic C 2008 Phys. Rev. Lett. 100 087001Google Scholar

    [156]

    Eschrig M 2006 Adv. Phys. 55 47Google Scholar

    [157]

    Song Y, Wang W, Van Dyke J S, Pouse N, Ran S, Yazici D, Schneidewind A, Čermák P, Qiu Y, Maple M B, Morr D K, Dai P 2020 Commun. Phys. 3 1Google Scholar

    [158]

    Chubukov A V, Gor'kov L P 2008 Phys. Rev. Lett. 101 147004Google Scholar

    [159]

    Kenzelmann M, Strässle Th, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar

    [160]

    Kenzelmann M 2017 Rep. Prog. Phys. 80 034501Google Scholar

    [161]

    Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar

    [162]

    Larkin A I, Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762

    [163]

    Yanase Y, Sigrist M 2009 J. Phys. Soc. Jpn. 78 114715Google Scholar

    [164]

    Hosoya K I, Ikeda R 2017 Phys. Rev. B 95 224513Google Scholar

    [165]

    Agterberg D F, Sigrist M, Tsunetsugu H 2009 Phys. Rev. Lett. 102 207004Google Scholar

    [166]

    Aperis A, Varelogiannis G, Littlewood P B 2010 Phys. Rev. Lett. 104 216403Google Scholar

    [167]

    Michal V P, Mineev V P 2011 Phys. Rev. B 84 052508Google Scholar

    [168]

    Kato Y, Batista C D, Vekhter I 2011 Phys. Rev. Lett. 107 096401Google Scholar

    [169]

    Martiny J H J, Gastiasoro M N, Vekhter I, Andersen B M 2015 Phys. Rev. B 92 224510Google Scholar

    [170]

    Suzuki K M, Ichioka M, Machida K 2011 Phys. Rev. B 83 140503(R)Google Scholar

    [171]

    Lin S Z, Kim D Y, Bauer E D, Ronning F, Thompson J D, Movshovich R 2020 Phys. Rev. Lett. 124 217001Google Scholar

    [172]

    Willers T, Strigari F, Hu Z, Sessi V, Brookes N B, Bauer E D, Sarro J L, Thommpson J D, Tanaka A, Wirth S, Tjeng L H, Severing A 2015 Proc. Natl. Acad. Sci. USA 112 2384Google Scholar

    [173]

    Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z, Pang G, Shang T, Zhang J, Lee H O, Park T, Jaime M, Thompson J D, Steglich F, Si Q, Yuan H Q 2015 Proc. Natl. Acad. Sci. USA 112 673Google Scholar

    [174]

    Ronning F, Helm T, Shirer K R, Bachmann M D, Balicas L, Chan M K, Ramshaw B J, McDonald R D, Balakirev F F, Jaime M, Bauer E D, Moll P J W 2017 Nature 548 313Google Scholar

    [175]

    Rosa P F S, Thomas S M, Balakirev F F, Bauer E D, Fernandes R M, Thompson J D, Ronning F, Jaime M 2019 Phys. Rev. Lett. 122 016402Google Scholar

    [176]

    Helm T, Grockowiak A D, Balakirev F F, Singleton J, Betts J B, Shirer K R, König M, Förster T, Bauer E D, Ronning F, Tozer S W, Moll P J W 2020 Nat. Commun. 11 3482Google Scholar

    [177]

    Shimozawa M, Goh S K, Endo R, Kobayashi R, Watashige T, Mizukami Y, Ikeda H, Shishido H, Yanase Y, Tereshima T, Shibauchi T, Matsuda Y 2014 Phys. Rev. Lett. 112 156404Google Scholar

    [178]

    Shimozawa M, Goh S K, Shibauchi T, Matsuda Y 2016 Rep. Prog. Phys. 79 074503Google Scholar

    [179]

    Nakamine G, Yamanaka T, Kitagawa S, Naritsuka M, Ishii T, Shibauchi T, Terashima T, Kasahara Y, Matsuda Y, Ishida K 2019 Phys. Rev. B 99 081115(R)Google Scholar

    [180]

    Yoshida T, Daido A, Yanase Y, Kawakami N 2017 Phys. Rev. Lett. 118 147001Google Scholar

    [181]

    Bauer E, Sigrist M 2012 Non-centrosymmetric Superconductors: Introduction Overview (Germany: Springer) pp35–80

    [182]

    Kneidinger F, Bauer E, Zeiringer I, Rogl P, Blaas-Schenner C, Reith D, Podloucky R 2015 Physica C 514 388Google Scholar

    [183]

    Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar

    [184]

    Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, T D Matsuda, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn. 75 013709Google Scholar

    [185]

    Yasuda T, Shishido H, Ueda T, Hashimoto S, Settai R, Takeuchi T, Matsuda T D, Haga Y, Ōnuki Y 2004 J. Phys. Soc. Jpn. 73 1657Google Scholar

    [186]

    Wang H, Guo J, Bauer E D, Sidorov V A, Zhao H, Zhang J, Zhou Y, Wang Z, Cai S, Yang K, Li A, Sun P, Yang Y F, Wu Q, Xiang T, Thompson J D, Sun L L 2019 Phys. Rev. B 99 024504Google Scholar

    [187]

    Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H, Terashima T 2005 Phys. Rev. Lett. 95 247004Google Scholar

    [188]

    Schuberth E, Tippmann M, Steinke L, Lausberg S, Steppke A, Brando M, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar

    [189]

    Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, Fisk Z 2008 Nat. Phys. 4 603Google Scholar

    [190]

    Paschen S, Lühmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P, Si Q 2004 Nature 432 881Google Scholar

    [191]

    Gegenwart P, Westerkamp T, Krellner C, Tokiwa Y, Paschen S, Geibel C, Steglich F, Abrahams E, Si Q 2007 Science 315 969Google Scholar

    [192]

    Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. USA 107 14547Google Scholar

    [193]

    Schubert M H, Tokiwa Y, Hübner S H, Mchalwat M, Blumenröther E, Jeevan H S, Gegenwart P 2019 Phys. Rev. Res. 1 032004(R)Google Scholar

    [194]

    Wirth S, Paschen S, Si Q, Steglich F 2019 arXiv: 1910.04108

    [195]

    Schubert M H, Tokiwa Y, Hübner S H, Mchalwat M, Blumenröther E, Jeevan H S, Gegenwart P 2020 arXiv: 2006.07049

    [196]

    Friedemann S, Wirth S, Oeschler N, Krellner C, Geibel C, Steglich F, MaQuilon S, Fisk Z, Paschen S, Zwicknagl G 2010 Phys. Rev. B 82 035103Google Scholar

    [197]

    Rourke P M C, McCollam A, Lapertot G, Knebel G, Flouguet J, Julian S R 2008 Phys. Rev. Lett. 101 237205Google Scholar

    [198]

    Sutton A, Rourke P, Taufour V, McCollam A, Lapertot G, Knebel G, Flouquet J, Julian S 2010 Phys. Status Solidi B 247 549Google Scholar

    [199]

    Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar

    [200]

    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar

    [201]

    Ishida K, Okamoto K, Kawasaki Y, Kitaoka Y, Trovarelli O, Geibel C, Steglich F 2002 Phys. Rev. Lett. 89 107202Google Scholar

    [202]

    Stock C, Broholm C, Demmel F, Van Duijn J, Taylor J W, Kang H J, Hu R, Petrovic C 2012 Phys. Rev. Lett. 109 127201Google Scholar

    [203]

    Saunders J 2018 Advanced School, Workshop on Correlations in Electron Systems: from Quantum Criticality to Topology Trieste, Italy, August 6–17, 2018

    [204]

    Saunders J 2018 The 12th International Conference on Materials and Mechanisms of Superconductivity and High Temperature Superconductors (M2S-2018) Beijing, China, August 19–24, 2018 p182

    [205]

    Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A H, Coleman P 2011 Science 331 316Google Scholar

    [206]

    Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Shimura Y, Sakakibara T, Nevidomskyy A H, Coleman P 2012 J. Phys. Conf. Ser. 391 012041Google Scholar

    [207]

    Nevidomskyy A H, Coleman P 2009 Phys. Rev. Lett. 102 077202Google Scholar

    [208]

    Ramires A, Coleman P, Nevidomskyy A H, Tsvelik A M 2012 Phys. Rev. Lett. 109 176404Google Scholar

    [209]

    Bareille C, Suzuki S, Nakayama M, Kuroda K, Nevidomskyy A H, Matsumoto Y, Nakatsuji S, Kondo T, Shin S 2018 Phys. Rev. B 97 045112Google Scholar

    [210]

    Kuga K, Kanai Y, Fujiwara H, Yamagami K, Hamamoto S, Aoyama Y, Sekiyama A, Higashiya A, Kadono T, Imada S, Yamasaki A, Tanaka A, Tamasaku K, Yabashi M, Ishikawa T, Nakatsuji S, Kiss T 2019 Phys. Rev. Lett. 123 036404Google Scholar

    [211]

    Aoki D, Ishida K, Flouquet J 2019 J. Phys. Soc. Jpn. 88 022001Google Scholar

    [212]

    Sheikin I, Huxley A, Braithwaite D, Brison J P, Watanabe S, Miyake K, Flouquet J 2001 Phys. Rev. B 64 220503Google Scholar

    [213]

    Hardy F, Huxley A D 2005 Phys. Rev. Lett. 94 247006Google Scholar

    [214]

    Huy N T, de Nijs D E, Huang Y K, de Visser A 2008 Phys. Rev. Lett. 100 077002Google Scholar

    [215]

    Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar

    [216]

    Aoki D, Matsuda T D, Taufour V, Hassinger E, Knebel G, Flouquet J 2009 J. Phys. Soc. Jpn. 78 113709Google Scholar

    [217]

    Daido A, Yoshida T, Yanase Y 2019 Phys. Rev. Lett. 122 227001Google Scholar

    [218]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Valiska M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88 043702Google Scholar

    [219]

    Sundar S, Gheidi S, Akintola K, Cote A M, Dunsiger S R, Ran S, Butch N P, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. B 100 140502(R)Google Scholar

    [220]

    Tokunaga Y, Sakai H, Kambe S, Hattori T, Higa N, Nakamine Genki, Kitagawa S, Ishida K, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 88 073701Google Scholar

    [221]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J P, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2 147Google Scholar

    [222]

    Ran S, Kim H, Liu I L, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101 140503(R)Google Scholar

    [223]

    Knebel G, Kimata M, Valiska M, Honda F, Li D, Braithwaite D, Lapertot G, Knafo W, Pourret A, Sato Y J, Shimizu Y, Kihara T, Brison J P, Flouquet J, Aoki D 2020 J. Phys. Soc. Jpn. 89 053707Google Scholar

    [224]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J P, Flouquet J 2020 J. Phys. Soc. Jpn. 89 053705Google Scholar

    [225]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709Google Scholar

    [226]

    Shishidou T, Suh H G, Brydon P M R, Weinert M, Agterberg D F 2020 arXiv: 2008.04250

    [227]

    Fujimori S, Kawasaki I, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88 103701Google Scholar

    [228]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C J, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124 076401Google Scholar

    [229]

    Metz T, Bae S, Ran S, Liu I, Eo Y S, Fuhrman W T, Agterberg D F, Anlage S M, Butch N P, Paglione J 2019 Phys. Rev. B 100 220504Google Scholar

    [230]

    Kittaka S, Shimizu Y, Sakakibara T, Nakamura A, Li D, Homma Y, Honda F, Aoki D, Machida K 2020 Phys. Rev. Res. 2 032014(R)Google Scholar

    [231]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [232]

    焦琳 2020 物理 49 586Google Scholar

    Jiao L 2020 Physics 49 586Google Scholar

    [233]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2020 arXiv: 2002.02539

    [234]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707

    [235]

    Geibel C, Schank C, Thies S, Kitazawa H, Bredl C D, Bohm A, Rau M, Grauel A, Caspary R, Helfrich R, Ahlheim U, Weber G, Steglich F 1991 Z. Phys. B 84 1Google Scholar

    [236]

    Geibel C, Thies S, Kaczorowski D, Mehner A, Grauel A, Seidel B, Ahlheim U, Helfrich R, Petersen K, Bredl C D, Steglich F 1991 Z. Phys. B 83 305Google Scholar

    [237]

    Matsuda K, Kohori Y, Kohara T 1997 Phys. Rev. B 55 15223Google Scholar

    [238]

    Hiroi M, Sera M, Kobayashi N, Haga Y, Yamamoto E, Ōnuki Y 1997 J. Phys. Soc. Jpn. 66 1595Google Scholar

    [239]

    Shimizu Y, Kittaka S, Sakakibara T, Tsutsumi Y, Nomoto T, Ikeda H, Machida K, Homma Y, Aoki D 2016 Phys. Rev. Lett. 117 037001Google Scholar

    [240]

    Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P, Komatsubara T 2001 Nature 410 340Google Scholar

    [241]

    Jourdan M, Huth M, Adrian H 1999 Nature 398 47Google Scholar

    [242]

    Watanabe T, Izawa K, Kasahara Y, Haga Y, Onuki Y, Thalmeier P, Maki K, Matsuda Y 2004 Phys. Rev. B 70 184502Google Scholar

    [243]

    McHale P, Fulde P, Thalmeier P 2004 Phys. Rev. B 70 014513Google Scholar

    [244]

    Kitagawa S, Takaki R, Manago M, Ishida K, Sato N K 2018 J. Phys. Soc. Jpn. 87 013701Google Scholar

    [245]

    Ishida K, Ozaki D, Kamatsuka T, Tou H, Kyogaku M, Kitaoka Y, Tateiwa N, Sato N K, Aso N, Geibel C, Steglich F 2002 Phys. Rev. Lett. 89 037002Google Scholar

    [246]

    Shimizu Y, Braithwaite D, Aoki D, Salce B, Brison J P 2019 Phys. Rev. Lett. 122 067001Google Scholar

    [247]

    Tien C, Jiang I M 1989 Phys. Rev. B 40 229Google Scholar

    [248]

    Tou H, Tsugawa N, Sera M, Haga Y, Ōnuki Y 2007 J. Magn. Magn. Mater. 310 706Google Scholar

    [249]

    Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica B 326 414Google Scholar

    [250]

    Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar

    [251]

    MacLaughlin D E, Tien C, Clark W G, Lan M D, Fisk Z, Smith J L, Ott H R 1984 Phys. Rev. Lett. 53 1833Google Scholar

    [252]

    Golding B, Bishop D J, Batlogg B, Haemmerle W H, Fisk Z, Smith J L, Ott H R 1985 Phys. Rev. Lett. 55 2479Google Scholar

    [253]

    Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar

    [254]

    Fomin I A, Brison J P 2000 J. Low Temp. Phys. 119 627Google Scholar

    [255]

    Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar

    [256]

    Strand J D, Harlingen D J V, Kycia J B, Halperin P W 2009 Phys. Rev. Lett. 103 197002Google Scholar

    [257]

    Avers K E, Gannon W J, Kuhn S J, Halperin W P, Sauls J A, DeBeer-Schmitt L, Dewhurst C D, Gavilano J, Nagy G, Gasser U, Eskildsen M R 2020 Nat. Phys. 16 531Google Scholar

    [258]

    Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1441Google Scholar

    [259]

    Bruls G, Weber D, Wolf B, Thalmeier P, Luthi B, de Visser A, Menovsky A 1990 Phys. Rev. Lett. 65 2294Google Scholar

    [260]

    Adenwalla S, Lin S W, Ran Q Z, Zhao Z, Ketterson J B, Sauls J A, Taillefer L, Hinks D G, Levy M, Sarma B K 1990 Phys. Rev. Lett. 65 2298Google Scholar

    [261]

    Shivaram B S, Rosenbaum T F, Hinks D G 1986 Phys. Rev. Lett. 57 1259Google Scholar

    [262]

    Tou H, Kitaoka Y, Asayama K, Kimura N, Ōnuki Y, Yamamoto E, Maezawa K 1996 Phys. Rev. Lett. 77 1374Google Scholar

    [263]

    Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar

    [264]

    Choi C H, Sauls J A 1991 Phys. Rev. Lett. 66 484Google Scholar

    [265]

    Sauls J A 1994 Adv. Phys. 43 113Google Scholar

    [266]

    Taillefer L, Ellman B, Lussier B, Poirier M 1997 Physica B 230 327Google Scholar

    [267]

    Graf M J, Yip S K, Sauls J A 2000 Phys. Rev. B 62 14393Google Scholar

    [268]

    Huxley A, Rodiere P, Paul D M K, Dijk N V, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar

    [269]

    Strand J D, Bahrm D J, Harmlingen D J V, Davis J P, Gannon W J, Halperin W P 2010 Science 328 1368Google Scholar

    [270]

    Machida K, Ozaki M A 1991 Phys. Rev. Lett. 66 3293Google Scholar

    [271]

    Machida K, Ohmi T, Ozaki M A 1993 J. Phys. Soc. Jpn. 62 3216Google Scholar

    [272]

    Machida Y, Itoh A, So Y, Izawa K, Haga Y, Yamamoto E, Kimura N, Onuki Y, Tsutsumi Y, Machida K 2012 Phys. Rev. Lett. 108 157002Google Scholar

    [273]

    Izawa K, Machida Y, Itoh A, So Y, Ota K, Haga Y, Yamamoto E, Kimura N, Onuki Y, Tsutsumi Y, Machida K 2014 J. Phys. Soc. Jpn. 83 061013Google Scholar

    [274]

    Tsutsumi Y, Machida K, Ohmi T, MA Ozaki 2012 J. Phys. Soc. Jpn. 81 074717Google Scholar

    [275]

    Nomoto T, Ikeda H 2016 Phys. Rev. Lett. 117 217002Google Scholar

    [276]

    Goswami P, Nevidomskyy A H 2015 Phys. Rev. B 92 214504Google Scholar

    [277]

    Yanase Y 2016 Phys. Rev. B 94 174502Google Scholar

    [278]

    Triola C, Black-Schaffer A M 2018 Phys. Rev. B 97 064505Google Scholar

    [279]

    Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, and Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar

    [280]

    Mydosh J A, Oppeneer P M 2014 Philos. Mag. 94 3642Google Scholar

    [281]

    Santini P, Amoretti G 1994 Phys. Rev. Lett. 73 1027Google Scholar

    [282]

    Haule K, Kotliar G 2009 Nat. Phys. 5 796Google Scholar

    [283]

    Elgazzar S, Rusz J, Amft M, Oppeneer P M, Mydosh J A 2009 Nat. Mater. 8 337

    [284]

    Chandra P, Coleman P, Mydosh J A, Tripathi V 2002 Nature 417 831Google Scholar

    [285]

    Ikeda H, Suzuki M T, Arita R, Takimoto T, Shibauchi T, Matsuda Y 2012 Nat. Phys. 8 528Google Scholar

    [286]

    Chandra P, Coleman P, Flint R 2013 Nature 493 621Google Scholar

    [287]

    Broholm C, Kjems J K, Denmark W J L Buyers, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar

    [288]

    Isaacs E D, McWhan D B, Kleiman R N, Bishop D J, Ice G E, Zschack P, Gaulin B D, Mason T E, Garrett D, Buyers W J L 1990 Phys. Rev. Lett. 65 3185Google Scholar

    [289]

    Riggs S C, Shapiro M C, Maharaj A V, Raghu S, Bauer E D, Baumbach R E, Giraldo-Gallo P, Wartenbe M, Fisher I R 2015 Nat. Commun. 6 6425Google Scholar

    [290]

    Wang L, He M, Hardy F, Aoki D, Willa K, Flouquet J, Meingast C 2020 Phys. Rev. Lett. 124 257601Google Scholar

    [291]

    Fisher R A, Kim S, Wu Y, Phillps N E, McEfresh M W, Torikachvili M S, Maple M B 1990 Physica B 163 419Google Scholar

    [292]

    Matsuda K, Kohori Y, Kohara T 1996 J. Phys. Soc. Jpn. 65 679Google Scholar

    [293]

    Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar

    [294]

    Yamashita T, Shimoyama Y, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Sumiyoshi H, Fujimoto S, Levchenko A, Shibauchi T, Matsuda Y 2014 Nat. Phys. 11 17Google Scholar

    [295]

    Hattori T, Sakai H, Tokunaga Y, Kambe S, TD Matsuda, Haga Y 2018 Phys. Rev. Lett. 120 027001Google Scholar

    [296]

    Vollmer R, Faißt A, Pfleiderer C, L ohneysen H v, Bauer E D, Ho P C, Zapf V, Maple M B 2003 Phys. Rev. Lett. 90 057001Google Scholar

    [297]

    Izawa K, Nakajima Y, Goryo J, Matsuda Y, Osaki S, Sugawara H, Sato H, Thalmeier P, Maki K 2003 Phys. Rev. Lett. 90 117001Google Scholar

    [298]

    Higemoto W, Saha S R, Koda A, Ohishi K, Kadono R, Aoki Y, Sugawara H, Sato H 2007 Phys. Rev. B 75 020510(R)Google Scholar

    [299]

    Aoki Y, Tsuchiya A, Kanayama T, Saha S R, Sugawara H, Sato H, Higemoto W, Koda A, Ohishi K, Nishiyama K, Kadono R 2003 Phys. Rev. Lett. 91 067003Google Scholar

    [300]

    Levenson-Falk E M, Schemm E R, Aoki Y, Maple M B, Kapitulnik A 2018 Phys. Rev. Lett. 120 187004Google Scholar

    [301]

    Kotegawa H, Yogi M, Imamura Y, Kawasaki Y, Zheng G Q, Kitaoka Y, Ohsaki S, Sugawara H, Aoki Y, Sato H 2003 Phys. Rev. Lett. 90 027001Google Scholar

    [302]

    Chia E E M, Salamon M B, Sugawara H, Sato H 2003 Phys. Rev. Lett. 91 247003Google Scholar

    [303]

    Seyfarth G, Brison J P, Méasson M A, Braithwaite D, Lapertot G, Flouquet J 2006 Phys. Rev. Lett. 97 236403Google Scholar

    [304]

    Hill R W, Shiyan Li, Maple M B, Louis Taillefer 2008 Phys. Rev. Lett. 101 237005Google Scholar

    [305]

    Ichioka M, Nakai N, Machida K 2003 J. Phys. Soc. Jpn 72 1322Google Scholar

    [306]

    Miyake K 2003 J. Phys. Condens. Matter 15 L275

    [307]

    Setty C, Wang Y, Phillips P W 2017 Phys. Rev. B 96 054508Google Scholar

    [308]

    Onimaru T, Kusunose H 2016 J. Phys. Soc. Jpn. 85 082002Google Scholar

    [309]

    Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Saiga Y, Matsushita Y, Tamura R, Nishimoto K, Ishii I, Suzuki T, Takabatake T 2010 J. Phys. Soc. Jpn. 79 033704Google Scholar

    [310]

    Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Sakakibara T, Karaki Y, Kubota M, Takabatake T 2011 Phys. Rev. Lett. 106 177001Google Scholar

    [311]

    Onimaru T, Nagasawa N, Matsumoto K T, Wakiya K, Umeo K, Kittaka S, Sakakibara T, Matsushita Y, Takabatake T 2012 Phys. Rev. B. 86 184426Google Scholar

    [312]

    Sakai A, Nakatsuji S 2011 J. Phys. Soc. Jpn. 80 063701Google Scholar

    [313]

    Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar

    [314]

    Sato T J, Ibuka S, Nambu Y, Yamazaki T, Hong T, Sakai A, Nakatsuji S 2012 Phys. Rev. B 86 184419Google Scholar

    [315]

    Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar

    [316]

    Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar

    [317]

    Onimaru T, Izawa K, Matsumoto K T, Yoshida T, Machida Y, Ikeura T, Wakiya K, Umeo K, Kittaka S, Araki K, Sakakibara T, Takabatake T 2016 Phys. Rev. B 94 075134Google Scholar

    [318]

    Yoshida T, Machida Y, KIzawa, Shimada Y, Nagasawa N, Onimaru T, Takabatake T, Gourgout A, Pourret A, Knebel G, Brison J P 2017 J. Phys. Soc. Jpn. 86 044711Google Scholar

    [319]

    Yamada R J, Onimaru T, Uenishi K, Yamane Y, Wakiya K, Matsumoto K T, Umeo K, Takabatake T 2019 J. Phys. Soc. Jpn. 88 054704Google Scholar

    [320]

    Fu M, Sakai A, Sogabe N, Tsujimoto M, Matsumoto Y, Nakatsuji S 2020 J. Phys. Soc. Jpn. 89 013704Google Scholar

    [321]

    Shimura Y, Zhang Q, Zeng B, Rhodes D, Schönemann R, Tsujimoto M, Matsumoto Y, Sakai A, Sakakibara T, Araki K, Zheng W, Zhou Q, Balicas L, Nakatsuji S 2019 Phys. Rev. Lett. 122 256601Google Scholar

    [322]

    Bauer E D, Altarawneh M M, Tobash P H, Gofryk K, Ayala-Valenzuela O E, Mitchell J N, McDonald R D, Mielke C H, Ronning F, Griveau J C, Colineau E, Eloirdi R, Caciuffo R, Scott B L, Janka O, Kauzlarich S M, Thompson J D 2012 J. Phys. Condens. Matter 24 052206Google Scholar

    [323]

    Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar

    [324]

    Bauer E D, Thompson J D 2015 Annu. Rev. Condens. Matter Phys. 6 137Google Scholar

    [325]

    Koutroulakis G, Yasuoka H, Tobash P H, Mitchell J N, Bauer E D, Thompson J D 2016 Phys. Rev. B 94 165115Google Scholar

    [326]

    Ramshaw B J, Shekhter A, McDonald R D, Betts J B, Mitchell J N, Tobash P H, Mielke C H, Bauer E D, Migliori A 2015 Proc. Natl. Acad. Sci. USA 112 3285Google Scholar

    [327]

    Magnani N, Eloirdi R, Wilhelm F, Colineau E, Griveau J C, Shick A B, Lander G H, Rogalev A, Caciuffo R 2017 Phys. Rev. Lett. 119 157204Google Scholar

    [328]

    Anderson P W 1984 Phys. Rev. B 30 4000Google Scholar

    [329]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar

    [330]

    Blount E I 1985 Phys. Rev. B 32 2935Google Scholar

    [331]

    Yip S, Garg A 1993 Phys. Rev. B 48 3304Google Scholar

    [332]

    Wenger F, Ostlund S 1993 Phys. Rev. B 47 5977Google Scholar

    [333]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [334]

    Yarzhemsky V G, Murav'ev E N 1992 J. Phys. Condens. Matter 4 3525

    [335]

    Micklitz T, Norman M R 2009 Phys. Rev. B 80 100506(R)Google Scholar

    [336]

    Micklitz T, Norman M R 2017 Phys. Rev. Lett. 118 207001Google Scholar

    [337]

    Sumita S, Nomoto T, Shiozaki K, Yanase Y 2019 Phys. Rev. B 99 134513Google Scholar

    [338]

    Kusunose H 2008 J. Phys. Soc. Jpn. 77 064710Google Scholar

    [339]

    Santini P, Carretta S, Amoretti G 2009 Rev. Mod. Phys. 81 807Google Scholar

    [340]

    Watanabe H, Yanase Y 2018 Phys. Rev. B 98 245129Google Scholar

    [341]

    Inui T, Tanabe Y, Onodera Y 1990 Group Theory and Its Applications in Physics (Berlin Heidelberg: Springer-Verlag) pp259–290

    [342]

    Xie N, Yang Y F 2015 Phys. Rev. B 91 195116Google Scholar

    [343]

    Wei L Y, Yang Y F 2017 Sci. Rep. 7 46089Google Scholar

    [344]

    Khait I, Azaria P, Hubig C, Schollwöck U, Auerbach A 2018 Proc. Natl. Acad. Sci. USA 115 5140Google Scholar

    [345]

    Hu D, Dong J J, Yang Y F 2019 Phys. Rev. B 100 195133Google Scholar

    [346]

    Hu D, Tong N H, Yang Y F 2020 Phys. Rev. Research 2 043407Google Scholar

    [347]

    Zhao H, Zhang J, Lyu M, Bachus S, Tokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y F, Chen G, Isikawa Y, Si Q, Steglich F, Sun P 2019 Nat. Phys. 15 1261Google Scholar

    [348]

    孙培杰, 赵恒灿 2020 物理 49 579Google Scholar

    Sun P J, Zhao H C 2020 Physics 49 579Google Scholar

    [349]

    Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P, Yuan H 2020 Nature 579 51Google Scholar

    [350]

    沈斌, 袁辉球 2020 物理 49 570Google Scholar

    Shen B, Yuan H Q 2020 Physics 49 570Google Scholar

  • 图 1  稀磁合金和常规超导体的电阻率随温度演化示意图. 稀磁合金中, 由于Kondo效应, 电阻率会在一定温度之下呈现$ -{\rm{log}} T $的行为, 而在$ T\rightarrow 0 $时以$ -T^2 $的方式趋于饱和; 超导中, 电阻率在$ T_{\rm{c}} $之下变为零

    Figure 1.  Characteristic evolution of resistivity as a function of temperature for dilute magnetic alloys and superconductors. In dilute magnetic alloys, the resistivity shows $ -{\rm{log}} T $ behavior within a certain range of temperature due to the Kondo effect and eventually saturates as $ -T^2 $ when $T\rightarrow 0$. In superconductors, resistivity becomes zero below $ T_{\rm{c}} $.

    图 2  (a) Kondo屏蔽和 (b) RKKY相互作用示意图

    Figure 2.  Sketch of the (a) Kondo screening and (b) RKKY interaction.

    图 3  Doniach相图. 其中AFM表示反铁磁, $ T_{\rm{N}} $为反铁磁转变温度

    Figure 3.  The Doniach phase diagram, where AFM denotes the antiferromagnetic phase and $ T_{\rm{N}} $ is the AFM transition temperature.

    图 4  重费米子的平均场能带杂化图像及“小”费米面到“大”费米面的转变

    Figure 4.  The mean-field hybridized band picture for heavy fermions and the associated transition from “small” to “large” Fermi surface.

    图 5  重费米子二流体模型基本相图. 其中T *, $ T_{\rm{L}} $分别表示相干温度和退局域化温度, $ f_0 $表示f电子与导带电子之间集体杂化的效率

    Figure 5.  The basic phase diagram of the two-fluid model for heavy fermion systems. T * and $ T_{\rm{L}} $ are the coherence temperature and the delocalization temperature, respectively. And $ f_0 $ represents the effectiveness of the collective hybridization between f electrons and conduction electrons.

    图 6  CeCu2Si2中比热随温度的演化. 内插图为两个不同CeCu2Si2样品在$ T_{\rm{c}} $附近的比热系数$ C/T $[57]

    Figure 6.  The specific heat (C) as a function of temperature (T) in CeCu2Si2. The inset compares $ C/T $ near $ T_{\rm{c}} $ in two different samples[57].

    图 7  重费米子超导体的典型相图 (a) CeIn3和CeRhIn5的温度-压力相图[69]; (b) UGe2的温度- 压力相图[69]; (c) CeCu2Si2和CeCu2Ge2的温度-压力相图[69]; (d) URu2Si2的温度-压力相图[70], 其中HO, SC, AF分别代表隐藏序(Hidden order)、超导和反铁磁; (e) CeCoIn5的磁场-温度相图[71]; (f) UPt3的磁场-温度相图[72], 其中A, B, C表示三种不同的超导序参量; (g) U1–xThxBe13的掺杂浓度-温度相图[73]; (h) PrOs4Sb12的磁场-温度相图[74], 其中FIOP表示磁场诱导的电四极矩相

    Figure 7.  Typical phase diagrams of heavy fermion superconductors. The temperature-pressure phase diagrams for: (a) CeIn3 and CeRhIn5[69]; (b) UGe2[69]; (c) CeCu2Si2 and CeCu2Ge2[69]; (d) URu2Si2, in which HO, SC, AF refer to the hidden order, superconducting and antiferromagnetic phases[70]. The magnetic field-temperature phase diagrams for: (e) CeCoIn5[71]; (f) UPt3 (A, B, C denote three different superconducting states)[72]; (h) PrOs4Sb12 (FIOP is a field-induced quadrupole phase)[74]. (g) The phase diagram of U1–xThxBe13 as a function of Th doping[73].

    图 8  不同超导材料中$ T_{\rm{c}} $与自旋涨落特征温度$ T_{\rm{0}} $的关系[67]

    Figure 8.  $ T_{\rm{c}} $ versus the characteristic spin-fluctuation temperature $ T_{\rm{0}} $ in different superconductors[67].

    图 9  重费米子超导的唯象理论框架

    Figure 9.  A phenomenological framework for heavy fermion superconductivity.

    图 10  CeCu2Si2的能带结构和费米面[125]. 费米面的颜色标记了费米速度的大小

    Figure 10.  Band structures and Fermi surfaces of CeCu2Si2[125]. The colors of the Fermi surfaces represent the Fermi velocity.

    图 11  CeCu2Si2的超导相图[125]

    Figure 11.  The superconducting phase diagram of CeCu2Si2[125]

    图 12  (a) CeRh1–xIrxIn5和CeCoIn5中轨道各向异性$ \alpha^2 $与体系基态的关系, 其中C (IC)表示公度(非公度)反铁磁[172];(b) CeRhIn5的磁场-压力-温度相图[176]

    Figure 12.  (a) Relation between the ground states of CeRh1–xIrxIn5 and CeCoIn5 and the orbital anisotropy $ \alpha^2 $, where C (IC) denote commensurate (incommensurate) antiferromagnetism[172]; (b) the magnetic field-pressure-temperature phase diagram of CeRhIn5[176].

    图 13  (a)${\rm{Ce}} MX_{3} $超导体在加压下的最高$ T_{\rm{c}} $与相应原胞体积的关系图[62]; (b) CeRhSi3的磁场-温度相图[187]

    Figure 13.  (a) Relation between the highest $ T_{\rm{c}} $ under pressure and the relative unit-cell volume of ${\rm{Ce}} MX_{3} $[62]; (b) the magnetic field-temperature phase diagram of CeRhSi3[187].

    图 14  YbRh2Si2的能带结构和费米面[126]

    Figure 14.  Band structures and Fermi surfaces of YbRh2Si2[126].

    图 15  (a)理论计算的YbRh2Si2超导随反铁磁波矢$ {{Q}}=(h, h, l) $变化的相图[126], 其中${{Q}}^{\rm{EXPT}}=(0.14\pm0.04, 0.14\pm 0.04, 0)$为中子散射实验得到的反铁磁波矢[202]; (b)理论预言的两种磁场-温度相图[126]

    Figure 15.  (a) The theoretical superconducting phase diagram of YbRh2Si2 depending on the antiferromagnetic wave vector $ {{Q}}=(h, h, l) $[126], where ${{Q}}^{\rm{EXPT}}=(0.14\pm0.04, 0.14\pm 0.04, 0)$ is the wave vector obtained from neutron scattering experiments[202]; (b) two candidate scenarios for the magnetic field-temperature phase diagram[126].

    图 16  (a) β-YbAlB4的磁化强度M对温度导数的$ T/B $标度行为, 其中左下方的内插图为β-YbAlB4的磁场-温度相图, 右上方的内插图为Pearson关联系数R (反映两个变量之间关联强度)的拟合值[206]; (b) α-YbAlB4β-YbAlB4的晶体结构图比较[210]

    Figure 16.  (a) $ T/B $-scaling of the temperature derivatives of the magnetization M in β-YbAlB4. The insets in the left-bottom and right-upper figures show the magnetic field-temperature phase diagram and the fitted Pearson coefficient (R), respectively. (b) comparison of the crystal structures of α-YbAlB4 and β-YbAlB4[210].

    图 17  UTe2的(a)晶体结构和(b)四种可能的磁构型; (c)U离子的磁矩和四种磁构型与基态的能量差值随库仑相互作用U的变化; (d)计算得到的磁交换系数$ J_i $($ i=1, 2, 3 $)随U的变化[127]

    Figure 17.  (a) Crystal structures and (b) four candidate magnetic configurations of UTe2; (c) magnetic moments of U ion and the energy difference between the four magnetic orders and the ground state as a function of the Coulomb interaction U; (d) calculated magnetic exchange interactions $ J_i $ ($ i=1, 2, 3 $) as a function of U [127].

    图 18  (a) DFT + U和(b) DFT + DMFT计算得到的UTe2能带结构; (c) UTe2的费米面结构及费米速度分布; (d) 三种超导不可约表示下节点在费米面上的分布

    Figure 18.  Electronic band structures of UTe2 obtained from (a) DFT + U and (b) DFT + DMFT calculations; (c) Fermi surface topology with colored Fermi velocities; (d) node distributions on the Fermi surfaces for three irreducible representations of superconductivity[127].

    图 19  UTe2超导态的磁场-转角相图. 其中SCPM, SCRE, SCFP表示三种不同的超导相, FP表示磁场极化相[64]

    Figure 19.  The magnetic field-azimuthal angle phase diagram for superconducting UTe2, where SCPM, SCRE, SCFP are three different superconducting phases, and FP denotes the field-polarized phase[64].

    图 20  UBe13的(a)温度-压力相图和(b)磁场-温度相图[246]

    Figure 20.  (a) Temperature-pressure phase diagram and (b) magnetic field-temperature phase diagram of UBe13[246].

    图 21  PuCoGa5超导机理的两种可能图像: (a)价态涨落机制; (b)自旋涨落机制[322]

    Figure 21.  Two possible scenarios for the pairing mechanism of PuCoGa5: (a) The valence-fluctuation mechanism; (b) the spin-fluctuation mechanism[322].

    表 1  重费米子超导材料及基本性质

    Table 1.  Heavy fermion superconductors and their basic properties

    类别 材料 晶系(空间群) $ T_{\rm{c}} $/K $ \gamma $/mJ·mol–1·K2 节点 特殊性质
    Ce基 CeCu2Si2 四方($ I4/mmm $) 0.7 1000 超导与SDW相分离; 加压诱导第二个超导
    CeCu2Ge2 四方($ I4/mmm $) 0.64 (10.1 GPa) 200 反铁磁竞争序; 加压诱导第二个超导
    CePd2Si2 四方($ I4/mmm $) 0.43 (3 GPa) 65 反铁磁竞争序
    CeRh2Si2 四方($ I4/mmm $) 0.42 (1.06 GPa) 23 反铁磁竞争序
    CeAg2Si2[61] 四方($ I4/mmm $) 1.25 (16 GPa) 反铁磁竞争序
    CeAu2Si2 四方($ I4/mmm $) 2.5 (22.5 GPa) 反铁磁竞争序
    CeNi2Ge2 四方($ I4/mmm $) 0.3 350 非费米液体正常态
    CeIn3 立方($ Pm3 m $) 0.23 (2.45 GPa) 140 线 反铁磁竞争序
    CeIrIn5 四方($ P4/mmm $) 0.4 750 线 非费米液体正常态
    CeCoIn5 四方($ P4/mmm $) 2.3 250 线 自旋单态配对; 强磁场诱导Q相
    CeRhIn5 四方($ P4/mmm $) 2.4 (2.3 GPa) 430 压力和磁场诱导费米面突变; 强磁场诱导向列序
    CePt2In7 四方($ I4/mmm $) 2.3 (3.1 GPa) 340 反铁磁竞争序
    Ce2RhIn8 四方($ P4/mmm $) 2.0 (2.3 GPa) 400 反铁磁竞争序
    Ce2PdIn8 四方($ P4/mmm $) 0.68 550 线 非费米液体正常态
    Ce2CoIn8 四方($ P4/mmm $) 0.4 500 非费米液体正常态
    Ce3PdIn11 四方($ P4/mmm $) 0.42 290 两个反铁磁序
    CePt3Si 四方($ P4 mm $) 0.75 390 线 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeIrSi3 四方($ I4 mm $) 1.65 (2.5 GPa) 120 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeRhSi3 四方($ I4 mm $) 1.0 (2.6 GPa) 120 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeCoGe3 四方($ I4 mm $) 0.69 (6.5 GPa) 32 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeRhGe3[62] 四方($ I4 mm $) 1.3 (21.5 GPa) 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeIrGe3 四方($ I4 mm $) 1.6 (24 GPa) 80 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
    CeNiGe3 正交($ Cmmm $) 0.43 (6.8 GPa) 45 反铁磁竞争序; 加压诱导第二个超导
    Ce2Rh3Ge5 正交($ Ibam $) 0.26 (4.0 GPa) 90 反铁磁竞争序
    CePd5Al2 四方($ I4/mmm $) 0.57 (10.8 GPa) 56 反铁磁竞争序
    Yb基 YbRh2Si2 四方($ I4/mmm $) 0.002 磁场诱导非常规量子临界点
    β-YbAlB4 正交($ Cmmm $) 0.08 150 $ T/B $标度行为; 磁场诱导拓扑金属正常态?
    U基 UGe2 正交($ Cmmm $) 0.8 (1.2 GPa) 34 线 铁磁竞争序; 等自旋三重态配对; 超导态破缺时间反演对称性
    UTe2[63,64] 正交 ($ Immm $) 1.6 110 铁磁涨落; 自旋三重态配对; 磁场诱导
    多个超导相
    URhGe 正交 ($ Pnma $) 0.25 163 铁磁竞争序; 等自旋三重态配对; 磁场
    诱导两个超导相
    UCoGe 正交 ($ Pnma $) 0.8 57 点? 线? 等自旋三重态配对; 铁磁竞争序; 磁场
    诱导两个超导相
    UIr 单斜 ($ P2_1 $) 0.15 (2.6 GPa) 49 多个铁磁相; 破缺中心反演; 混合宇称配对?
    U2PtC2 四方($ I4/mmm $) 1.47 150 无磁有序; 自旋三重态配对; 铁磁涨落
    UPd2Al3 六方($ P6/mmm $) 2.0 200 线 反铁磁竞争序; 自旋单态配对;
    磁场调制FFLO?
    UNi2Al3 六方($ P6/mmm $) 1.1 120 反铁磁竞争序; 自旋三重态配对; 超导
    与反铁磁共存
    UBe13 立方($ Fm\bar{3}c $) 0.95 1000 非费米液体正常态; 自旋三重态配对;
    Th掺杂诱导多个超导相
    UPt3 六方($ P6_3/mmc $) 0.530, 0.480 440 线+点 自旋三重态配对; 多个超导相; 低温超
    导破缺时间反演对称性
    U6Fe 四方($ I4/mcm $) 3.8 157 电荷密度波竞争序; 磁场调制FFLO?
    URu2Si2 四方($ I4/mmm $) 1.53 70 线 隐藏序正常态; 自旋单态配对; 破缺
    时间反演对称性
    Pr基 PrOs4Sb12 立方($ Im\bar3 $) 1.82, 1.74 500 点? 无? 磁场诱导反铁电四极矩序; 两个超导相; 低温超导破缺时间反演对称性
    PrIr2Zn20 立方($ Fd\bar3 m $) 0.05 反铁电四极矩竞争序
    PrRh2Zn20 立方($ Fd\bar3 m $) 0.06 反铁电四极矩竞争序
    PrV2Al20 立方($ Fd\bar3 m $) 0.05 900 反铁电四极矩竞争序
    PrTi2Al20 立方($ Fd\bar3 m $) 0.2 100 铁电四极矩竞争序
    Pu基 PuCoGa5 四方($ P4/mmm $) 18.5 77 线 混合价态; 价态涨落机制? 自旋涨落机制?
    PuCoIn5 四方($ P4/mmm $) 2.5 200 线 混合价态; 自旋涨落机制
    PuRhGa5 四方($ P4/mmm $) 8.7 70 线 混合价态; 自旋涨落机制
    PuRhIn5 四方($ P4/mmm $) 1.6 350 线 混合价态; 价态涨落机制? 自旋涨落机制?
    Np基 NpPd5Al2 四方($ I4/mmm $) 4.9 200 非费米液体正常态
    *表格中$ T_{\rm{c}}$后有括号表明为压力下超导, “—”表示尚无相关实验, “?”表示还不确定或存在争议. 表中主要数据及特殊性质可参考文献[65-68].
    DownLoad: CSV

    表 2  超导能隙函数的对称性变换

    Table 2.  Symmetry transformation of the superconducting gap functions

    对称性变换 自旋单态 自旋三重态
    费米子交换$ P $ $ P\psi({{k}})=\psi(-{{k}})=\psi({{k}}) $ $ P{{d}}({{k}})={{d}}(-{{k}})=-{{d}}({{k}}) $
    空间旋转$ g $ $ g\psi({{k}})=\psi(D(g){{k}}) $ $ g{{d}}({{k}})={{d}}(D(g){{k}}) $
    自旋旋转$ g_s $ $ g_s\psi({{k}})=\psi({{k}}) $ $ g_s{{d}}({{k}})=\bar D(g_s){{d}}({{k}}) $1
    时间反演$ \theta $ $ \theta\psi({{k}})=\psi^*(-{{k}}) $ $ \theta{{d}}({{k}})=-{{d}}^*(-{{k}}) $
    空间反演$ I $ $ I\psi({{k}})=\psi(-{{k}}) $ $ I{{d}}({{k}})={{d}}(-{{k}}) $
    $ U(1) $规范$\varPhi$ $\varPhi\psi({{k} })={\rm e}^{{\rm i}\phi}\psi({{k} })$ $\varPhi{{d} }({{k} })={\rm e}^{{\rm i}\phi}{{d} }({{k} })$
    *其中$D(g)$为晶体点群G的表示矩阵, $\bar D(g_s)$为SU(2)群的表示矩阵.
    1存在自旋-轨道耦合时, 自旋的旋转与${{k}}$ 的旋转不再独立, 即$g_s{{d}}({{k}})=\bar D(g_s){{d}}(\bar D(g_s){{k}})$.
    DownLoad: CSV
    Baidu
  • [1]

    Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar

    [2]

    Liu M, Xu Y, Hu D, Fu Z, Tong N, Chen X, Cheng J, Xie W, Yang Y F 2017 arXiv: 1705.00846

    [3]

    杨义峰 2014 物理 43 80Google Scholar

    Yang Y F 2014 Physics 43 80Google Scholar

    [4]

    李璐 2020 物理 49 595Google Scholar

    Li L 2020 Physics 49 595Google Scholar

    [5]

    刘洋, 曹超, 吴帆, 袁辉球 2020 物理 49 602Google Scholar

    Liu Y, Cao C, Wu F, Yuan H Q 2020 Physics 49 602Google Scholar

    [6]

    Meissner W, Voigt B 1930 Ann. Phys. 399 892Google Scholar

    [7]

    de Haas W J, de Boer J, van der Berg D 1934 Physica 1 1115Google Scholar

    [8]

    Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 12 120

    [9]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [10]

    Alekseevskii N E, Gaidukow Y P 1957 Sov. Phys. JETP 4 807

    [11]

    van den Berg G J 1964 Prog. Low Temp. Phys. 4 194Google Scholar

    [12]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [13]

    李正中 1982 物理 11 101

    Li Z Z 1982 Physics 11 101

    [14]

    张广铭, 于渌 2007 物理 36 434Google Scholar

    Zhang G M, Yu L 2007 Physics 36 434Google Scholar

    [15]

    Yosida K 1966 Phys. Rev. 147 223Google Scholar

    [16]

    Abrikosov A A 1965 Physics Physique Fizika 2 5Google Scholar

    [17]

    Kondo J 1965 Prog. Theor. Phys. 34 204Google Scholar

    [18]

    Anderson P W 1970 J. Phys. C 3 2346Google Scholar

    [19]

    Wilson K G 1975 Rev. Mod. Phys. 47 773Google Scholar

    [20]

    Nozières P 1974 J. Low Temp. Phys. 17 31Google Scholar

    [21]

    Suhl H 1965 Phys. Rev. 138 515Google Scholar

    [22]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99Google Scholar

    [23]

    Kasuya T 1956 Prog. Theor. Phys. 16 58Google Scholar

    [24]

    Yosida K 1957 Phys. Rev. 106 893Google Scholar

    [25]

    Doniach S 1977 Physica B+C 91 231Google Scholar

    [26]

    Barnes S E 1976 J. Phys. F 6 1375Google Scholar

    [27]

    Coleman P 1984 Phys. Rev. B 29 3035Google Scholar

    [28]

    Read N, Newns D M 1983 J. Phys. C 16 3273Google Scholar

    [29]

    Read N, Newns D M, Doniach S 1984 Phys. Rev. B 30 3841Google Scholar

    [30]

    Bickers N E 1987 Rev. Mod. Phys. 59 845Google Scholar

    [31]

    Rice T M, Ueda K 1985 Phys. Rev. Lett. 55 995Google Scholar

    [32]

    Rice T M, Ueda K 1986 Phys. Rev. B 34 6420Google Scholar

    [33]

    Brandow B H 1986 Phys. Rev. B 33 215Google Scholar

    [34]

    Fazekas P, Brandow B H 1987 Phys. Scr. 36 809Google Scholar

    [35]

    Aeppli G, Fisk Z 1992 Comments Condens. Matter Phys. 16 155

    [36]

    Fazekas P 1999 Lecture Notes on Electron Correlation Magnetism (Singapore: World Scientific) p650

    [37]

    Coleman P 2015 Introduction to Many-Body Physics (United Kongdom: Cambridge University Press) p668

    [38]

    Shirer K R, Shockley A C, Dioguardi A P, Crocker J, Lin C H, apRoberts-Warren N, Nisson D M, Klavins P, Cooley J C, Yang Y F, Curro N J 2012 Proc. Natl. Acad. Sci. USA 109 18249Google Scholar

    [39]

    Kummer K, Patil S, Chikina A, Güttler M, Höppner M, Generalov A, Danzenbächer S, Seiro S, Hannaske A, Krellner C, Kucherenko Y, Shi M, Radovic M, Rienks E, Zwicknagl G, Matho K, Allen J W, Laubschat C, Geibel C, Vyalikh D V 2015 Phys. Rev. X 5 011028Google Scholar

    [40]

    Yang Y F, Fisk Z, Lee H O, Thompson J D, Pines D 2008 Nature 454 611Google Scholar

    [41]

    Yang Y F, Pines D 2008 Phys. Rev. Lett. 100 096404Google Scholar

    [42]

    Yang Y F, Urbano R, Curro N J, Pines D, Bauer E D 2009 Phys. Rev. Lett. 103 197004Google Scholar

    [43]

    Yang Y F 2009 Phys. Rev. B 79 241107(R)Google Scholar

    [44]

    Yang Y F, Pines D 2012 Proc. Natl. Acad. Sci. USA 109 18247Google Scholar

    [45]

    Yang Y F 2013 Phys. Rev. B 87 045102Google Scholar

    [46]

    Yang Y F, Pines D 2014 Proc. Natl. Acad. Sci. USA 111 8398Google Scholar

    [47]

    Yang Y F 2015 Phys. Rev. B 92 195131Google Scholar

    [48]

    Yang Y F 2020 Phys. Rev. Res. 2 033105Google Scholar

    [49]

    Yang Y F, Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178Google Scholar

    [50]

    Yang Y F 2016 Rep. Prog. Phys. 79 074501Google Scholar

    [51]

    杨义峰, 谢能, 李宇 2015 物理学进展 79 074501

    Yang Y F, Xie N, Li Y 2015 Prog. Phys. 79 074501

    [52]

    Lonzarich G, Pines D, Yang Y F 2017 Rep. Prog. Phys. 80 024501Google Scholar

    [53]

    Abrikosov A A, Gor'kov L P 1961 Sov. Phys. JETP 12 1243

    [54]

    Maple M B, Fertig W A, Mota A C, de Long L E, Wohlleben D, Titzgerald R 1972 Solid State Commun. 11 829Google Scholar

    [55]

    Bucher E, Maita J P, Hull G W, Fulton R C, Cooper A S 1975 Phys. Rev. B 11 440Google Scholar

    [56]

    Franz W, Grießel A, Steglich F, Wohlleben D 1978 Z. Phys. B 31 7Google Scholar

    [57]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar

    [58]

    Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar

    [59]

    Stewart G R, Fisk Z, Willis J O, Smith J L 1984 Phys. Rev. Lett. 52 679Google Scholar

    [60]

    Palstra T T M, Menovsky A A, van den Berg J, Dirkmaat A J, Kes P H, Nieuwenhuys G J, Mydosh J A 1985 Phys. Rev. Lett. 55 2727Google Scholar

    [61]

    Scheerer G W, Ren Z, Lapertot G, Garbarino G, Jaccard D 2018 Physica B 536 150Google Scholar

    [62]

    Wang H, Guo J, Bauer E D, Sidorov V A, Zhao H, Zhang J, Zhou Y, Wang Z, Cai S, Yang K, Li A, Li X, Li Y, Sun P, Yang Y F, Wu Q, Xiang T, Thompson J D, Sun L L 2018 Phys. Rev. B 97 064514Google Scholar

    [63]

    Ran S, Eckberg C, Ding Q, Furukawa Y, Metz T, Saha S R, Liu I, Zic M, Kim H, Paglione J, Butch N P 2019 Science 365 684Google Scholar

    [64]

    Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 15 1250Google Scholar

    [65]

    杨义峰, 李宇 2015 64 217401Google Scholar

    Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar

    [66]

    Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar

    [67]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [68]

    谢武, 沈斌, 张勇军, 郭春煜, 徐嘉诚, 路欣, 袁辉球 2019 68 177101Google Scholar

    Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta Phys. Sin. 68 177101Google Scholar

    [69]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar

    [70]

    Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y, Matsuda Y 2009 New. J. Phys. 11 055061Google Scholar

    [71]

    Kim D Y, Lin S Z, Weickert F, Kenzelmann M, Bauer E D, Ronning F, Thompson J D, Movshovich R 2016 Phys. Rev. X 6 041059Google Scholar

    [72]

    Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar

    [73]

    Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar

    [74]

    Aoki Y, Tayama T, Sakakibara T, Kuwahara K, Iwasa K, Kohgi M, Higemoto W, MacLaughlin D E, Sugawara H, Sato H 2007 J. Phys. Soc. Jpn. 76 051006Google Scholar

    [75]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383Google Scholar

    [76]

    Akhiezer A I, Pineranchuk I Y 1959 Sov. Phys. JETP 9 605

    [77]

    Kohn W, Luttinger J 1965 Phys. Rev. Lett. 15 524Google Scholar

    [78]

    Berk N F, Schrieffer J R 1966 Phys. Rev. Lett. 17 433Google Scholar

    [79]

    Layzer A, Fay D 1971 Int. J. Magn. 1 135

    [80]

    Leggett A J 1975 Rev. Mod. Phys. 47 331Google Scholar

    [81]

    Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar

    [82]

    Stewart G R 1984 Rev. Mod. Phys. 56 755Google Scholar

    [83]

    Béal-Monod M T, Bourbonnais C, Emery V J 1986 Phys. Rev. B 34 7716Google Scholar

    [84]

    Miyake K, Schmitt-Rink S, Varma C M 1986 Phys. Rev. B 34 6554Google Scholar

    [85]

    Scalapino D J, Loh E, Hirsch J E 1986 Phys. Rev. B 34 8190Google Scholar

    [86]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [87]

    Millis A J, Monien H, Pines D 1990 Phys. Rev. B 42 167Google Scholar

    [88]

    Monthoux P, Balatsky A V, Pines D 1991 Phys. Rev. Lett. 67 3448Google Scholar

    [89]

    Monthoux P, Balatsky A V, Pines D 1992 Phys. Rev. B 46 14803Google Scholar

    [90]

    Monthoux P, Pines D 1992 Phys. Rev. Lett. 69 961Google Scholar

    [91]

    Monthoux P, Pines D 1993 Phys. Rev. B 47 6069Google Scholar

    [92]

    Monthoux P, Lonzarich G G 1999 Phys. Rev. B 59 14598Google Scholar

    [93]

    Monthoux P, Lonzarich G G 2001 Phys. Rev. B 63 054529Google Scholar

    [94]

    Monthoux P, Lonzarich G G 2002 Phys. Rev. B 66 224504Google Scholar

    [95]

    Moriya T, Ueda K 2003 Rep. Prog. Phys. 66 1299Google Scholar

    [96]

    Robinson N J, Johnson P D, Rice T M, Tsvelik A M 2019 Rep. Prog. Phys. 82 126501Google Scholar

    [97]

    Singh N 2020 arXiv: 2006.06335

    [98]

    Fujimori S 2016 J. Phys. Condens. Matter 28 153002Google Scholar

    [99]

    Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, Feng D L 2017 Phys. Rev. B 96 045107Google Scholar

    [100]

    Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S, Feng D L 2018 Phys. Rev. B 97 075149Google Scholar

    [101]

    Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S, Feng D L 2018 Phys. Rev. Lett. 120 066403Google Scholar

    [102]

    张云, 谭世勇, 陈秋云 2020 物理 49 611Google Scholar

    Zhang Y, Tan S Y, Chen Q Y 2020 Physics 49 611Google Scholar

    [103]

    Anisimov V I, Aryasetiawan F, Lichtenstein A 1997 J. Phys. Condens. Matter 9 767Google Scholar

    [104]

    Suzuki M T, Harima H 2010 J. Phys. Soc. Jpn. 79 024705Google Scholar

    [105]

    Zwicknagl G 2016 Rep. Prog. Phys. 79 124501Google Scholar

    [106]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [107]

    Shim J H, Haule K, Kotliar G 2007 Science 318 1615Google Scholar

    [108]

    Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar

    [109]

    Millis A J 1993 Phys. Rev. B 48 7183Google Scholar

    [110]

    Moriya T, Takimoto T 1995 J. Phys. Soc. Jpn. 64 960Google Scholar

    [111]

    Wölfle P, Abrahams E 2011 Phys. Rev. B 84 041101(R)Google Scholar

    [112]

    Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. USA 109 3238Google Scholar

    [113]

    Abrahams E, Schmalian J, Wölfle P 2014 Phys. Rev. B 90 045105Google Scholar

    [114]

    Wölfle P, Schmalian J, Abrahams E 2017 Rep. Prog. Phys. 80 044501Google Scholar

    [115]

    Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar

    [116]

    Si Q, Pixley J H, Nica E, Yamamoto S J, Goswami P, Yu R, Kirchner S 2014 J. Phys. Soc. Jpn. 83 061005Google Scholar

    [117]

    Yang Y F, Pines D, Lonzarich L 2017 Proc. Natl. Acad. Sci. USA 114 6250Google Scholar

    [118]

    Yang Y F 2020 Sci. China-Phys. Mech. Astron. 63 117431Google Scholar

    [119]

    Van Dyke J, Massee F, Allan M P, Davis J C, Petrovic C, Morr D K 2014 Proc. Natl. Acad. Sci. USA 111 11663Google Scholar

    [120]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [121]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [122]

    Varma C M 2012 Rep. Prog. Phys. 75 052501Google Scholar

    [123]

    Ummarino G A 2013 Emergent Phenomena in Condensed Matter (Jülich: Forschungszentrum Jülich GmbH) p13.1–13.36

    [124]

    李宇, 杨义峰 2017 科学通报 62 4068Google Scholar

    Li Y, Yang Y F 2017 Chin. Sci. Bull. 62 4068Google Scholar

    [125]

    Li Y, Liu M, Fu Z, Chen X, Yang F, Yang Y F 2018 Phys. Rev. Lett. 120 217001Google Scholar

    [126]

    Li Y, Wang Q, Xu Y, Xie W, Yang Y F 2019 Phys. Rev. B 100 085132Google Scholar

    [127]

    Xu Y, Sheng Y, Yang Y F 2019 Phys. Rev. Lett. 123 217002Google Scholar

    [128]

    Liu Z, Li Y, Yang Y F 2019 Chin. Phys. B 28 077103Google Scholar

    [129]

    Steglich F 2014 Philos. Mag. 94 3259Google Scholar

    [130]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar

    [131]

    Sigrist M 2005 AIP Conf. Proc. 789 165Google Scholar

    [132]

    Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Jeevan H S, Gegenwart P, Steglich F, Si Q, Yuan H Q 2018 Proc. Natl. Acad. Sci. USA 115 5343Google Scholar

    [133]

    Takenaka T, Mizukami Y, Wilcox J A, Konczykowski M, Seiro S, Geibel C, Tokiwa Y, Kasahara Y, Putzke C, Matsuda Y, Carrington A, Shibauchi T 2017 Phys. Rev. Lett. 119 077001Google Scholar

    [134]

    Yamashita T, Takenaka T, Tokiwa Y, Wilcox J A, Mizukami Y, Terazawa D, Kasahara Y, Kittaka S, Sakakibara T, Konczykowski M, Seiro S, Jeevan H S, Geibel C, Putzke C, Onishi T, Ikeda H, Carrington A, Shibauchi T, Matsuda Y 2017 Sci. Adv. 3 e1601667Google Scholar

    [135]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H, Machida K 2016 Phys. Rev. B 94 054514Google Scholar

    [136]

    Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F, Wahl P 2016 Phys. Rev. B 93 045123Google Scholar

    [137]

    Zwicknagl G, Pulst U 1993 Physica B 186-188 895Google Scholar

    [138]

    Ikeda H, Suzuki M T, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar

    [139]

    Hunt M, Meeson P, Probst P A, Reinders P, Springford M, Assmus W, Sun W 1990 J. Phys. Condens. Matter 2 6859Google Scholar

    [140]

    Hunt M, Messon P, Probst P A, Reinders P, Springford M, Assmus W, Sun W 1990 Physica B 165-166 323Google Scholar

    [141]

    Vasumathi D, Barbiellini B, Manuel A A, Hoffmann L, Jarlborg T, Modler R, Geibel C, Steglich F, Peter M 1997 Phys. Rev. B 55 11714Google Scholar

    [142]

    Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar

    [143]

    Nishiyama S, Miyake K, Varma C M 2013 Phys. Rev. B 88 014510Google Scholar

    [144]

    Eremin I, Zwicknagl G, Thalmeier P, Fulde P 2008 Phys. Rev. Lett. 101 187001Google Scholar

    [145]

    Kitagawa S, Nakamine G, Ishida K, Jeevan H S, Geibel C, Steglich F 2018 Phys. Rev. Lett. 121 157004Google Scholar

    [146]

    Bang Y, Stewart G R 2017 J. Phys. Condens. Matter 29 123003Google Scholar

    [147]

    Tazai R, Kontani H 2018 Phys. Rev. B 98 205107Google Scholar

    [148]

    Tazai R, Kontani H 2019 J. Phys. Soc. Jpn. 88 063701Google Scholar

    [149]

    Holmes A T, Jaccard D, Miyake K 2004 Phys. Rev. B 69 024508Google Scholar

    [150]

    Onishi Y, Miyake K 2000 Physica B 281 191Google Scholar

    [151]

    Onishi Y, Miyake K 2000 J. Phys. Soc. Jpn. 69 3955Google Scholar

    [152]

    Miyake K, Watanabe S 2017 Philos. Mag. 97 3495Google Scholar

    [153]

    Scheerer G W, Ren Z, Watanabe S, Lapertot G, Aoki D, Jaccard D, Miyake K 2018 npj Quantum Materials 3 1Google Scholar

    [154]

    Pourovskii L V, Hansmann P, Ferrero M, Georges A 2014 Phys. Rev. Lett. 112 106407Google Scholar

    [155]

    Stock C, Broholm C, Hudis J, Kang H J, Petrovic C 2008 Phys. Rev. Lett. 100 087001Google Scholar

    [156]

    Eschrig M 2006 Adv. Phys. 55 47Google Scholar

    [157]

    Song Y, Wang W, Van Dyke J S, Pouse N, Ran S, Yazici D, Schneidewind A, Čermák P, Qiu Y, Maple M B, Morr D K, Dai P 2020 Commun. Phys. 3 1Google Scholar

    [158]

    Chubukov A V, Gor'kov L P 2008 Phys. Rev. Lett. 101 147004Google Scholar

    [159]

    Kenzelmann M, Strässle Th, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar

    [160]

    Kenzelmann M 2017 Rep. Prog. Phys. 80 034501Google Scholar

    [161]

    Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar

    [162]

    Larkin A I, Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762

    [163]

    Yanase Y, Sigrist M 2009 J. Phys. Soc. Jpn. 78 114715Google Scholar

    [164]

    Hosoya K I, Ikeda R 2017 Phys. Rev. B 95 224513Google Scholar

    [165]

    Agterberg D F, Sigrist M, Tsunetsugu H 2009 Phys. Rev. Lett. 102 207004Google Scholar

    [166]

    Aperis A, Varelogiannis G, Littlewood P B 2010 Phys. Rev. Lett. 104 216403Google Scholar

    [167]

    Michal V P, Mineev V P 2011 Phys. Rev. B 84 052508Google Scholar

    [168]

    Kato Y, Batista C D, Vekhter I 2011 Phys. Rev. Lett. 107 096401Google Scholar

    [169]

    Martiny J H J, Gastiasoro M N, Vekhter I, Andersen B M 2015 Phys. Rev. B 92 224510Google Scholar

    [170]

    Suzuki K M, Ichioka M, Machida K 2011 Phys. Rev. B 83 140503(R)Google Scholar

    [171]

    Lin S Z, Kim D Y, Bauer E D, Ronning F, Thompson J D, Movshovich R 2020 Phys. Rev. Lett. 124 217001Google Scholar

    [172]

    Willers T, Strigari F, Hu Z, Sessi V, Brookes N B, Bauer E D, Sarro J L, Thommpson J D, Tanaka A, Wirth S, Tjeng L H, Severing A 2015 Proc. Natl. Acad. Sci. USA 112 2384Google Scholar

    [173]

    Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z, Pang G, Shang T, Zhang J, Lee H O, Park T, Jaime M, Thompson J D, Steglich F, Si Q, Yuan H Q 2015 Proc. Natl. Acad. Sci. USA 112 673Google Scholar

    [174]

    Ronning F, Helm T, Shirer K R, Bachmann M D, Balicas L, Chan M K, Ramshaw B J, McDonald R D, Balakirev F F, Jaime M, Bauer E D, Moll P J W 2017 Nature 548 313Google Scholar

    [175]

    Rosa P F S, Thomas S M, Balakirev F F, Bauer E D, Fernandes R M, Thompson J D, Ronning F, Jaime M 2019 Phys. Rev. Lett. 122 016402Google Scholar

    [176]

    Helm T, Grockowiak A D, Balakirev F F, Singleton J, Betts J B, Shirer K R, König M, Förster T, Bauer E D, Ronning F, Tozer S W, Moll P J W 2020 Nat. Commun. 11 3482Google Scholar

    [177]

    Shimozawa M, Goh S K, Endo R, Kobayashi R, Watashige T, Mizukami Y, Ikeda H, Shishido H, Yanase Y, Tereshima T, Shibauchi T, Matsuda Y 2014 Phys. Rev. Lett. 112 156404Google Scholar

    [178]

    Shimozawa M, Goh S K, Shibauchi T, Matsuda Y 2016 Rep. Prog. Phys. 79 074503Google Scholar

    [179]

    Nakamine G, Yamanaka T, Kitagawa S, Naritsuka M, Ishii T, Shibauchi T, Terashima T, Kasahara Y, Matsuda Y, Ishida K 2019 Phys. Rev. B 99 081115(R)Google Scholar

    [180]

    Yoshida T, Daido A, Yanase Y, Kawakami N 2017 Phys. Rev. Lett. 118 147001Google Scholar

    [181]

    Bauer E, Sigrist M 2012 Non-centrosymmetric Superconductors: Introduction Overview (Germany: Springer) pp35–80

    [182]

    Kneidinger F, Bauer E, Zeiringer I, Rogl P, Blaas-Schenner C, Reith D, Podloucky R 2015 Physica C 514 388Google Scholar

    [183]

    Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar

    [184]

    Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, T D Matsuda, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn. 75 013709Google Scholar

    [185]

    Yasuda T, Shishido H, Ueda T, Hashimoto S, Settai R, Takeuchi T, Matsuda T D, Haga Y, Ōnuki Y 2004 J. Phys. Soc. Jpn. 73 1657Google Scholar

    [186]

    Wang H, Guo J, Bauer E D, Sidorov V A, Zhao H, Zhang J, Zhou Y, Wang Z, Cai S, Yang K, Li A, Sun P, Yang Y F, Wu Q, Xiang T, Thompson J D, Sun L L 2019 Phys. Rev. B 99 024504Google Scholar

    [187]

    Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H, Terashima T 2005 Phys. Rev. Lett. 95 247004Google Scholar

    [188]

    Schuberth E, Tippmann M, Steinke L, Lausberg S, Steppke A, Brando M, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar

    [189]

    Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, Fisk Z 2008 Nat. Phys. 4 603Google Scholar

    [190]

    Paschen S, Lühmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P, Si Q 2004 Nature 432 881Google Scholar

    [191]

    Gegenwart P, Westerkamp T, Krellner C, Tokiwa Y, Paschen S, Geibel C, Steglich F, Abrahams E, Si Q 2007 Science 315 969Google Scholar

    [192]

    Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. USA 107 14547Google Scholar

    [193]

    Schubert M H, Tokiwa Y, Hübner S H, Mchalwat M, Blumenröther E, Jeevan H S, Gegenwart P 2019 Phys. Rev. Res. 1 032004(R)Google Scholar

    [194]

    Wirth S, Paschen S, Si Q, Steglich F 2019 arXiv: 1910.04108

    [195]

    Schubert M H, Tokiwa Y, Hübner S H, Mchalwat M, Blumenröther E, Jeevan H S, Gegenwart P 2020 arXiv: 2006.07049

    [196]

    Friedemann S, Wirth S, Oeschler N, Krellner C, Geibel C, Steglich F, MaQuilon S, Fisk Z, Paschen S, Zwicknagl G 2010 Phys. Rev. B 82 035103Google Scholar

    [197]

    Rourke P M C, McCollam A, Lapertot G, Knebel G, Flouguet J, Julian S R 2008 Phys. Rev. Lett. 101 237205Google Scholar

    [198]

    Sutton A, Rourke P, Taufour V, McCollam A, Lapertot G, Knebel G, Flouquet J, Julian S 2010 Phys. Status Solidi B 247 549Google Scholar

    [199]

    Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar

    [200]

    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar

    [201]

    Ishida K, Okamoto K, Kawasaki Y, Kitaoka Y, Trovarelli O, Geibel C, Steglich F 2002 Phys. Rev. Lett. 89 107202Google Scholar

    [202]

    Stock C, Broholm C, Demmel F, Van Duijn J, Taylor J W, Kang H J, Hu R, Petrovic C 2012 Phys. Rev. Lett. 109 127201Google Scholar

    [203]

    Saunders J 2018 Advanced School, Workshop on Correlations in Electron Systems: from Quantum Criticality to Topology Trieste, Italy, August 6–17, 2018

    [204]

    Saunders J 2018 The 12th International Conference on Materials and Mechanisms of Superconductivity and High Temperature Superconductors (M2S-2018) Beijing, China, August 19–24, 2018 p182

    [205]

    Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A H, Coleman P 2011 Science 331 316Google Scholar

    [206]

    Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Shimura Y, Sakakibara T, Nevidomskyy A H, Coleman P 2012 J. Phys. Conf. Ser. 391 012041Google Scholar

    [207]

    Nevidomskyy A H, Coleman P 2009 Phys. Rev. Lett. 102 077202Google Scholar

    [208]

    Ramires A, Coleman P, Nevidomskyy A H, Tsvelik A M 2012 Phys. Rev. Lett. 109 176404Google Scholar

    [209]

    Bareille C, Suzuki S, Nakayama M, Kuroda K, Nevidomskyy A H, Matsumoto Y, Nakatsuji S, Kondo T, Shin S 2018 Phys. Rev. B 97 045112Google Scholar

    [210]

    Kuga K, Kanai Y, Fujiwara H, Yamagami K, Hamamoto S, Aoyama Y, Sekiyama A, Higashiya A, Kadono T, Imada S, Yamasaki A, Tanaka A, Tamasaku K, Yabashi M, Ishikawa T, Nakatsuji S, Kiss T 2019 Phys. Rev. Lett. 123 036404Google Scholar

    [211]

    Aoki D, Ishida K, Flouquet J 2019 J. Phys. Soc. Jpn. 88 022001Google Scholar

    [212]

    Sheikin I, Huxley A, Braithwaite D, Brison J P, Watanabe S, Miyake K, Flouquet J 2001 Phys. Rev. B 64 220503Google Scholar

    [213]

    Hardy F, Huxley A D 2005 Phys. Rev. Lett. 94 247006Google Scholar

    [214]

    Huy N T, de Nijs D E, Huang Y K, de Visser A 2008 Phys. Rev. Lett. 100 077002Google Scholar

    [215]

    Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar

    [216]

    Aoki D, Matsuda T D, Taufour V, Hassinger E, Knebel G, Flouquet J 2009 J. Phys. Soc. Jpn. 78 113709Google Scholar

    [217]

    Daido A, Yoshida T, Yanase Y 2019 Phys. Rev. Lett. 122 227001Google Scholar

    [218]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Valiska M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88 043702Google Scholar

    [219]

    Sundar S, Gheidi S, Akintola K, Cote A M, Dunsiger S R, Ran S, Butch N P, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. B 100 140502(R)Google Scholar

    [220]

    Tokunaga Y, Sakai H, Kambe S, Hattori T, Higa N, Nakamine Genki, Kitagawa S, Ishida K, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 88 073701Google Scholar

    [221]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J P, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2 147Google Scholar

    [222]

    Ran S, Kim H, Liu I L, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101 140503(R)Google Scholar

    [223]

    Knebel G, Kimata M, Valiska M, Honda F, Li D, Braithwaite D, Lapertot G, Knafo W, Pourret A, Sato Y J, Shimizu Y, Kihara T, Brison J P, Flouquet J, Aoki D 2020 J. Phys. Soc. Jpn. 89 053707Google Scholar

    [224]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J P, Flouquet J 2020 J. Phys. Soc. Jpn. 89 053705Google Scholar

    [225]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709Google Scholar

    [226]

    Shishidou T, Suh H G, Brydon P M R, Weinert M, Agterberg D F 2020 arXiv: 2008.04250

    [227]

    Fujimori S, Kawasaki I, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88 103701Google Scholar

    [228]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C J, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124 076401Google Scholar

    [229]

    Metz T, Bae S, Ran S, Liu I, Eo Y S, Fuhrman W T, Agterberg D F, Anlage S M, Butch N P, Paglione J 2019 Phys. Rev. B 100 220504Google Scholar

    [230]

    Kittaka S, Shimizu Y, Sakakibara T, Nakamura A, Li D, Homma Y, Honda F, Aoki D, Machida K 2020 Phys. Rev. Res. 2 032014(R)Google Scholar

    [231]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [232]

    焦琳 2020 物理 49 586Google Scholar

    Jiao L 2020 Physics 49 586Google Scholar

    [233]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2020 arXiv: 2002.02539

    [234]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707

    [235]

    Geibel C, Schank C, Thies S, Kitazawa H, Bredl C D, Bohm A, Rau M, Grauel A, Caspary R, Helfrich R, Ahlheim U, Weber G, Steglich F 1991 Z. Phys. B 84 1Google Scholar

    [236]

    Geibel C, Thies S, Kaczorowski D, Mehner A, Grauel A, Seidel B, Ahlheim U, Helfrich R, Petersen K, Bredl C D, Steglich F 1991 Z. Phys. B 83 305Google Scholar

    [237]

    Matsuda K, Kohori Y, Kohara T 1997 Phys. Rev. B 55 15223Google Scholar

    [238]

    Hiroi M, Sera M, Kobayashi N, Haga Y, Yamamoto E, Ōnuki Y 1997 J. Phys. Soc. Jpn. 66 1595Google Scholar

    [239]

    Shimizu Y, Kittaka S, Sakakibara T, Tsutsumi Y, Nomoto T, Ikeda H, Machida K, Homma Y, Aoki D 2016 Phys. Rev. Lett. 117 037001Google Scholar

    [240]

    Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P, Komatsubara T 2001 Nature 410 340Google Scholar

    [241]

    Jourdan M, Huth M, Adrian H 1999 Nature 398 47Google Scholar

    [242]

    Watanabe T, Izawa K, Kasahara Y, Haga Y, Onuki Y, Thalmeier P, Maki K, Matsuda Y 2004 Phys. Rev. B 70 184502Google Scholar

    [243]

    McHale P, Fulde P, Thalmeier P 2004 Phys. Rev. B 70 014513Google Scholar

    [244]

    Kitagawa S, Takaki R, Manago M, Ishida K, Sato N K 2018 J. Phys. Soc. Jpn. 87 013701Google Scholar

    [245]

    Ishida K, Ozaki D, Kamatsuka T, Tou H, Kyogaku M, Kitaoka Y, Tateiwa N, Sato N K, Aso N, Geibel C, Steglich F 2002 Phys. Rev. Lett. 89 037002Google Scholar

    [246]

    Shimizu Y, Braithwaite D, Aoki D, Salce B, Brison J P 2019 Phys. Rev. Lett. 122 067001Google Scholar

    [247]

    Tien C, Jiang I M 1989 Phys. Rev. B 40 229Google Scholar

    [248]

    Tou H, Tsugawa N, Sera M, Haga Y, Ōnuki Y 2007 J. Magn. Magn. Mater. 310 706Google Scholar

    [249]

    Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica B 326 414Google Scholar

    [250]

    Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar

    [251]

    MacLaughlin D E, Tien C, Clark W G, Lan M D, Fisk Z, Smith J L, Ott H R 1984 Phys. Rev. Lett. 53 1833Google Scholar

    [252]

    Golding B, Bishop D J, Batlogg B, Haemmerle W H, Fisk Z, Smith J L, Ott H R 1985 Phys. Rev. Lett. 55 2479Google Scholar

    [253]

    Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar

    [254]

    Fomin I A, Brison J P 2000 J. Low Temp. Phys. 119 627Google Scholar

    [255]

    Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar

    [256]

    Strand J D, Harlingen D J V, Kycia J B, Halperin P W 2009 Phys. Rev. Lett. 103 197002Google Scholar

    [257]

    Avers K E, Gannon W J, Kuhn S J, Halperin W P, Sauls J A, DeBeer-Schmitt L, Dewhurst C D, Gavilano J, Nagy G, Gasser U, Eskildsen M R 2020 Nat. Phys. 16 531Google Scholar

    [258]

    Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1441Google Scholar

    [259]

    Bruls G, Weber D, Wolf B, Thalmeier P, Luthi B, de Visser A, Menovsky A 1990 Phys. Rev. Lett. 65 2294Google Scholar

    [260]

    Adenwalla S, Lin S W, Ran Q Z, Zhao Z, Ketterson J B, Sauls J A, Taillefer L, Hinks D G, Levy M, Sarma B K 1990 Phys. Rev. Lett. 65 2298Google Scholar

    [261]

    Shivaram B S, Rosenbaum T F, Hinks D G 1986 Phys. Rev. Lett. 57 1259Google Scholar

    [262]

    Tou H, Kitaoka Y, Asayama K, Kimura N, Ōnuki Y, Yamamoto E, Maezawa K 1996 Phys. Rev. Lett. 77 1374Google Scholar

    [263]

    Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar

    [264]

    Choi C H, Sauls J A 1991 Phys. Rev. Lett. 66 484Google Scholar

    [265]

    Sauls J A 1994 Adv. Phys. 43 113Google Scholar

    [266]

    Taillefer L, Ellman B, Lussier B, Poirier M 1997 Physica B 230 327Google Scholar

    [267]

    Graf M J, Yip S K, Sauls J A 2000 Phys. Rev. B 62 14393Google Scholar

    [268]

    Huxley A, Rodiere P, Paul D M K, Dijk N V, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar

    [269]

    Strand J D, Bahrm D J, Harmlingen D J V, Davis J P, Gannon W J, Halperin W P 2010 Science 328 1368Google Scholar

    [270]

    Machida K, Ozaki M A 1991 Phys. Rev. Lett. 66 3293Google Scholar

    [271]

    Machida K, Ohmi T, Ozaki M A 1993 J. Phys. Soc. Jpn. 62 3216Google Scholar

    [272]

    Machida Y, Itoh A, So Y, Izawa K, Haga Y, Yamamoto E, Kimura N, Onuki Y, Tsutsumi Y, Machida K 2012 Phys. Rev. Lett. 108 157002Google Scholar

    [273]

    Izawa K, Machida Y, Itoh A, So Y, Ota K, Haga Y, Yamamoto E, Kimura N, Onuki Y, Tsutsumi Y, Machida K 2014 J. Phys. Soc. Jpn. 83 061013Google Scholar

    [274]

    Tsutsumi Y, Machida K, Ohmi T, MA Ozaki 2012 J. Phys. Soc. Jpn. 81 074717Google Scholar

    [275]

    Nomoto T, Ikeda H 2016 Phys. Rev. Lett. 117 217002Google Scholar

    [276]

    Goswami P, Nevidomskyy A H 2015 Phys. Rev. B 92 214504Google Scholar

    [277]

    Yanase Y 2016 Phys. Rev. B 94 174502Google Scholar

    [278]

    Triola C, Black-Schaffer A M 2018 Phys. Rev. B 97 064505Google Scholar

    [279]

    Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, and Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar

    [280]

    Mydosh J A, Oppeneer P M 2014 Philos. Mag. 94 3642Google Scholar

    [281]

    Santini P, Amoretti G 1994 Phys. Rev. Lett. 73 1027Google Scholar

    [282]

    Haule K, Kotliar G 2009 Nat. Phys. 5 796Google Scholar

    [283]

    Elgazzar S, Rusz J, Amft M, Oppeneer P M, Mydosh J A 2009 Nat. Mater. 8 337

    [284]

    Chandra P, Coleman P, Mydosh J A, Tripathi V 2002 Nature 417 831Google Scholar

    [285]

    Ikeda H, Suzuki M T, Arita R, Takimoto T, Shibauchi T, Matsuda Y 2012 Nat. Phys. 8 528Google Scholar

    [286]

    Chandra P, Coleman P, Flint R 2013 Nature 493 621Google Scholar

    [287]

    Broholm C, Kjems J K, Denmark W J L Buyers, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar

    [288]

    Isaacs E D, McWhan D B, Kleiman R N, Bishop D J, Ice G E, Zschack P, Gaulin B D, Mason T E, Garrett D, Buyers W J L 1990 Phys. Rev. Lett. 65 3185Google Scholar

    [289]

    Riggs S C, Shapiro M C, Maharaj A V, Raghu S, Bauer E D, Baumbach R E, Giraldo-Gallo P, Wartenbe M, Fisher I R 2015 Nat. Commun. 6 6425Google Scholar

    [290]

    Wang L, He M, Hardy F, Aoki D, Willa K, Flouquet J, Meingast C 2020 Phys. Rev. Lett. 124 257601Google Scholar

    [291]

    Fisher R A, Kim S, Wu Y, Phillps N E, McEfresh M W, Torikachvili M S, Maple M B 1990 Physica B 163 419Google Scholar

    [292]

    Matsuda K, Kohori Y, Kohara T 1996 J. Phys. Soc. Jpn. 65 679Google Scholar

    [293]

    Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar

    [294]

    Yamashita T, Shimoyama Y, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Sumiyoshi H, Fujimoto S, Levchenko A, Shibauchi T, Matsuda Y 2014 Nat. Phys. 11 17Google Scholar

    [295]

    Hattori T, Sakai H, Tokunaga Y, Kambe S, TD Matsuda, Haga Y 2018 Phys. Rev. Lett. 120 027001Google Scholar

    [296]

    Vollmer R, Faißt A, Pfleiderer C, L ohneysen H v, Bauer E D, Ho P C, Zapf V, Maple M B 2003 Phys. Rev. Lett. 90 057001Google Scholar

    [297]

    Izawa K, Nakajima Y, Goryo J, Matsuda Y, Osaki S, Sugawara H, Sato H, Thalmeier P, Maki K 2003 Phys. Rev. Lett. 90 117001Google Scholar

    [298]

    Higemoto W, Saha S R, Koda A, Ohishi K, Kadono R, Aoki Y, Sugawara H, Sato H 2007 Phys. Rev. B 75 020510(R)Google Scholar

    [299]

    Aoki Y, Tsuchiya A, Kanayama T, Saha S R, Sugawara H, Sato H, Higemoto W, Koda A, Ohishi K, Nishiyama K, Kadono R 2003 Phys. Rev. Lett. 91 067003Google Scholar

    [300]

    Levenson-Falk E M, Schemm E R, Aoki Y, Maple M B, Kapitulnik A 2018 Phys. Rev. Lett. 120 187004Google Scholar

    [301]

    Kotegawa H, Yogi M, Imamura Y, Kawasaki Y, Zheng G Q, Kitaoka Y, Ohsaki S, Sugawara H, Aoki Y, Sato H 2003 Phys. Rev. Lett. 90 027001Google Scholar

    [302]

    Chia E E M, Salamon M B, Sugawara H, Sato H 2003 Phys. Rev. Lett. 91 247003Google Scholar

    [303]

    Seyfarth G, Brison J P, Méasson M A, Braithwaite D, Lapertot G, Flouquet J 2006 Phys. Rev. Lett. 97 236403Google Scholar

    [304]

    Hill R W, Shiyan Li, Maple M B, Louis Taillefer 2008 Phys. Rev. Lett. 101 237005Google Scholar

    [305]

    Ichioka M, Nakai N, Machida K 2003 J. Phys. Soc. Jpn 72 1322Google Scholar

    [306]

    Miyake K 2003 J. Phys. Condens. Matter 15 L275

    [307]

    Setty C, Wang Y, Phillips P W 2017 Phys. Rev. B 96 054508Google Scholar

    [308]

    Onimaru T, Kusunose H 2016 J. Phys. Soc. Jpn. 85 082002Google Scholar

    [309]

    Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Saiga Y, Matsushita Y, Tamura R, Nishimoto K, Ishii I, Suzuki T, Takabatake T 2010 J. Phys. Soc. Jpn. 79 033704Google Scholar

    [310]

    Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Sakakibara T, Karaki Y, Kubota M, Takabatake T 2011 Phys. Rev. Lett. 106 177001Google Scholar

    [311]

    Onimaru T, Nagasawa N, Matsumoto K T, Wakiya K, Umeo K, Kittaka S, Sakakibara T, Matsushita Y, Takabatake T 2012 Phys. Rev. B. 86 184426Google Scholar

    [312]

    Sakai A, Nakatsuji S 2011 J. Phys. Soc. Jpn. 80 063701Google Scholar

    [313]

    Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar

    [314]

    Sato T J, Ibuka S, Nambu Y, Yamazaki T, Hong T, Sakai A, Nakatsuji S 2012 Phys. Rev. B 86 184419Google Scholar

    [315]

    Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar

    [316]

    Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar

    [317]

    Onimaru T, Izawa K, Matsumoto K T, Yoshida T, Machida Y, Ikeura T, Wakiya K, Umeo K, Kittaka S, Araki K, Sakakibara T, Takabatake T 2016 Phys. Rev. B 94 075134Google Scholar

    [318]

    Yoshida T, Machida Y, KIzawa, Shimada Y, Nagasawa N, Onimaru T, Takabatake T, Gourgout A, Pourret A, Knebel G, Brison J P 2017 J. Phys. Soc. Jpn. 86 044711Google Scholar

    [319]

    Yamada R J, Onimaru T, Uenishi K, Yamane Y, Wakiya K, Matsumoto K T, Umeo K, Takabatake T 2019 J. Phys. Soc. Jpn. 88 054704Google Scholar

    [320]

    Fu M, Sakai A, Sogabe N, Tsujimoto M, Matsumoto Y, Nakatsuji S 2020 J. Phys. Soc. Jpn. 89 013704Google Scholar

    [321]

    Shimura Y, Zhang Q, Zeng B, Rhodes D, Schönemann R, Tsujimoto M, Matsumoto Y, Sakai A, Sakakibara T, Araki K, Zheng W, Zhou Q, Balicas L, Nakatsuji S 2019 Phys. Rev. Lett. 122 256601Google Scholar

    [322]

    Bauer E D, Altarawneh M M, Tobash P H, Gofryk K, Ayala-Valenzuela O E, Mitchell J N, McDonald R D, Mielke C H, Ronning F, Griveau J C, Colineau E, Eloirdi R, Caciuffo R, Scott B L, Janka O, Kauzlarich S M, Thompson J D 2012 J. Phys. Condens. Matter 24 052206Google Scholar

    [323]

    Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar

    [324]

    Bauer E D, Thompson J D 2015 Annu. Rev. Condens. Matter Phys. 6 137Google Scholar

    [325]

    Koutroulakis G, Yasuoka H, Tobash P H, Mitchell J N, Bauer E D, Thompson J D 2016 Phys. Rev. B 94 165115Google Scholar

    [326]

    Ramshaw B J, Shekhter A, McDonald R D, Betts J B, Mitchell J N, Tobash P H, Mielke C H, Bauer E D, Migliori A 2015 Proc. Natl. Acad. Sci. USA 112 3285Google Scholar

    [327]

    Magnani N, Eloirdi R, Wilhelm F, Colineau E, Griveau J C, Shick A B, Lander G H, Rogalev A, Caciuffo R 2017 Phys. Rev. Lett. 119 157204Google Scholar

    [328]

    Anderson P W 1984 Phys. Rev. B 30 4000Google Scholar

    [329]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar

    [330]

    Blount E I 1985 Phys. Rev. B 32 2935Google Scholar

    [331]

    Yip S, Garg A 1993 Phys. Rev. B 48 3304Google Scholar

    [332]

    Wenger F, Ostlund S 1993 Phys. Rev. B 47 5977Google Scholar

    [333]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [334]

    Yarzhemsky V G, Murav'ev E N 1992 J. Phys. Condens. Matter 4 3525

    [335]

    Micklitz T, Norman M R 2009 Phys. Rev. B 80 100506(R)Google Scholar

    [336]

    Micklitz T, Norman M R 2017 Phys. Rev. Lett. 118 207001Google Scholar

    [337]

    Sumita S, Nomoto T, Shiozaki K, Yanase Y 2019 Phys. Rev. B 99 134513Google Scholar

    [338]

    Kusunose H 2008 J. Phys. Soc. Jpn. 77 064710Google Scholar

    [339]

    Santini P, Carretta S, Amoretti G 2009 Rev. Mod. Phys. 81 807Google Scholar

    [340]

    Watanabe H, Yanase Y 2018 Phys. Rev. B 98 245129Google Scholar

    [341]

    Inui T, Tanabe Y, Onodera Y 1990 Group Theory and Its Applications in Physics (Berlin Heidelberg: Springer-Verlag) pp259–290

    [342]

    Xie N, Yang Y F 2015 Phys. Rev. B 91 195116Google Scholar

    [343]

    Wei L Y, Yang Y F 2017 Sci. Rep. 7 46089Google Scholar

    [344]

    Khait I, Azaria P, Hubig C, Schollwöck U, Auerbach A 2018 Proc. Natl. Acad. Sci. USA 115 5140Google Scholar

    [345]

    Hu D, Dong J J, Yang Y F 2019 Phys. Rev. B 100 195133Google Scholar

    [346]

    Hu D, Tong N H, Yang Y F 2020 Phys. Rev. Research 2 043407Google Scholar

    [347]

    Zhao H, Zhang J, Lyu M, Bachus S, Tokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y F, Chen G, Isikawa Y, Si Q, Steglich F, Sun P 2019 Nat. Phys. 15 1261Google Scholar

    [348]

    孙培杰, 赵恒灿 2020 物理 49 579Google Scholar

    Sun P J, Zhao H C 2020 Physics 49 579Google Scholar

    [349]

    Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P, Yuan H 2020 Nature 579 51Google Scholar

    [350]

    沈斌, 袁辉球 2020 物理 49 570Google Scholar

    Shen B, Yuan H Q 2020 Physics 49 570Google Scholar

  • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [3] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [4] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu. Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [5] Cheng Jin-Guang. Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [6] Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin. The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry. Acta Physica Sinica, 2015, 64(18): 184207. doi: 10.7498/aps.64.184207
    [7] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [8] Zhou Yang, Guo Jian-Hong. Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] Zhang Jing-Lei, Jiao Lin, Pang Gui-Ming, Yuan Hui-Qiu. Order parameters of non-centrosymmetric superconductors. Acta Physica Sinica, 2015, 64(21): 217403. doi: 10.7498/aps.64.217403
    [10] Yang Yi-Feng, Li Yu. Heavy-fermion superconductivity and competing orders. Acta Physica Sinica, 2015, 64(21): 217401. doi: 10.7498/aps.64.217401
    [11] Lu Hong-Yan, Chen San, Liu Bao-Tong. Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [12] Wu Jian-Bao. A finite-temperature Landau theory for multilayered cuprate superconductors. Acta Physica Sinica, 2006, 55(4): 2049-2056. doi: 10.7498/aps.55.2049
    [13] Cao Tian-De, Xu Li-Na. Pairing symmetry with interband interaction. Acta Physica Sinica, 2005, 54(3): 1406-1409. doi: 10.7498/aps.54.1406
    [14] SUN JIU-XUN, ZHANG LI-YUAN. A COMBINATION MODEL OF SUPERCONDUCTIVITY UNDER s+d MIXED WAVE SYMMETRY. Acta Physica Sinica, 1996, 45(11): 1913-1920. doi: 10.7498/aps.45.1913
    [15] Feng Shi-ping. THEORETICAL INVESTIGATION OF HEAVY FERMION SUPERCONDUCTIVITY IN ITINERANT FERROMAGNETS. Acta Physica Sinica, 1986, 35(9): 1243-1247. doi: 10.7498/aps.35.1243
    [16] Zhang Cheng, Huo Yu-ping. THE CRITICAL BEHAVIOR OF THE FLUCTUATION IN TRIMOLECULAR REACTION MODELX. Acta Physica Sinica, 1983, 32(6): 750-761. doi: 10.7498/aps.32.750
    [17] LUO LIAO-FU, LU TAN. THE INNER SYMMETRIES OF HADRONS AND THE SUPERNARROW RESONANCES. Acta Physica Sinica, 1976, 25(2): 168-171. doi: 10.7498/aps.25.168
    [18] WANG GUO-VEN. DETERMINATIONS OF THE SYMMETRIES OF SINGLE-ELECTRONIC LEVELS AND PHONONS IN A CRYSTAL. Acta Physica Sinica, 1966, 22(2): 197-204. doi: 10.7498/aps.22.197
    [19] . Acta Physica Sinica, 1965, 21(11): 1915-1918. doi: 10.7498/aps.21.1915
    [20] . Acta Physica Sinica, 1964, 20(10): 1048-1052. doi: 10.7498/aps.20.1048
Metrics
  • Abstract views:  18427
  • PDF Downloads:  1275
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2020
  • Accepted Date:  22 September 2020
  • Available Online:  24 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回
Baidu
map