-
Magnetic quantum critical point (QCP) arises when a long-range magnetic order occurring at finite temperature can be suppressed to absolute zero temperature by using chemical substitutions or exerting high pressure. Exotic phenomena such as the non-Fermi-liquid behaviors or the unconventional superconductivity are frequently observed near the magnetic QCP. In comparison with chemical substitutions, the application of high pressure has some advantages in the sense that it introduces no chemical disorder and can approach the QCP in a very precise manner. In this article, our recent progress in exploring the unconventional superconductors in the vicinity of pressure-induced magnetic QCP is reviewed. By utilizing the piston-cylinder and cubic-anvil-cell apparatus that can maintain a relatively good hydrostatic pressure condition, we first investigated systematically the effect of pressure on the electrical transport properties of the helimagnetic CrAs and MnP. We discovered for the first time the emergence of superconductivity below Tc=2 K and 1 K near their pressure-induced magnetic QCPs at Pc0.8 GPa and 8 GPa for CrAs and MnP, respectively. They represent the first superconductor among the Cr- and Mn-based compounds, and thus open a new avenue to searching novel superconductors in the Cr- and Mn-based systems. Then, we constructed the most comprehensive temperature-pressure phase diagram of FeSe single crystal based on detailed measurements of high-pressure resistivity and alternating current magnetic susceptibility. We uncovered a dome-shaped magnetic phase superseding the nematic order, and observed the sudden enhancement of superconductivity with Tcmax=38.5 K accompanied with the suppression of magnetic order. Our results revealed explicitly the competing nature of nematic order, antiferromagnetic order, and superconductivity, and how the high-Tc superconductivity is achieved by suppressing the long-range antiferromagnetic order, suggesting the important role of antiferromagnetic spin fluctuations for the Cooper paring. These aforementioned results demonstrated that high pressure is an effective approach to exploring or investigating the anomalous phenomena of strongly correlated electronic systems by finely tuning the competing electronic orders.
-
Keywords:
- high-pressure measurements /
- magnetic quantum critical point /
- unconventional superconductivity /
- non-Fermi-liquid behaviors
[1] Coleman P, Schofield A J 2005 Nature 433 226
[2] Sachdev S, Keimer B 2011 Phys. Today 64 29
[3] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39
[4] Norman M R 2011 Science 332 196
[5] Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177
[6] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186
[7] Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015
[8] Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511
[9] Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126
[10] Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502
[11] Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306
[12] Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225
[13] Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907
[14] Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615
[15] Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903
[16] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508
[17] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[18] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
[19] Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185
[20] Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230
[21] Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206
[22] Boller H, Kallel A 1971 Solid State Commun. 9 1699
[23] Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703
[24] Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128
[25] Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207
[26] Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542
[27] Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002
[28] Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558
[29] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013
[30] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506
[31] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16
[32] Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033
[33] Felcher G P 1966 J. Appl. Phys. 37 1056
[34] Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430
[35] Banus M D 1972 J. Solid State Chem. 4 391
[36] Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405
[37] Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403
[38] Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509
[39] Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037
[40] Yanase A, Hasegawa A 1980 J. Phys. C 13 1989
[41] Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623
[42] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002
[43] Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005
[44] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953
[45] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[46] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520
[47] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15
[48] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630
[49] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[50] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[51] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285
[52] Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201
[53] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003
[54] Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517
[55] Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701
-
[1] Coleman P, Schofield A J 2005 Nature 433 226
[2] Sachdev S, Keimer B 2011 Phys. Today 64 29
[3] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39
[4] Norman M R 2011 Science 332 196
[5] Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177
[6] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186
[7] Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015
[8] Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511
[9] Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126
[10] Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502
[11] Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306
[12] Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225
[13] Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907
[14] Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615
[15] Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903
[16] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508
[17] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[18] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
[19] Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185
[20] Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230
[21] Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206
[22] Boller H, Kallel A 1971 Solid State Commun. 9 1699
[23] Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703
[24] Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128
[25] Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207
[26] Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542
[27] Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002
[28] Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558
[29] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013
[30] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506
[31] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16
[32] Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033
[33] Felcher G P 1966 J. Appl. Phys. 37 1056
[34] Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430
[35] Banus M D 1972 J. Solid State Chem. 4 391
[36] Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405
[37] Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403
[38] Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509
[39] Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037
[40] Yanase A, Hasegawa A 1980 J. Phys. C 13 1989
[41] Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623
[42] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002
[43] Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005
[44] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953
[45] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[46] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520
[47] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15
[48] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630
[49] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[50] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[51] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285
[52] Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201
[53] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003
[54] Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517
[55] Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701
Catalog
Metrics
- Abstract views: 7477
- PDF Downloads: 509
- Cited By: 0