搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点耦合强度对手性Majorana费米子共振交换的调制

吴海滨 刘迎娣 刘彦军 李金花 刘建军

引用本文:
Citation:

量子点耦合强度对手性Majorana费米子共振交换的调制

吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军

Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength

Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun
PDF
HTML
导出引用
  • 本文研究了外部量子点耦合作用下, 量子点耦合两个手性Majorana费米子体系的共振交换. 为了观察两个手性Majorana费米子的共振交换, 提出了一种基于量子反常霍尔绝缘体(QAHI)近邻耦合s波超导体的电路. 数值计算的结果表明, 通过外部量子点耦合强度可以调节手性Majorana费米子的共振透射. 如果经历了共振隧穿的一个手性Majorana费米子与另一个量子点或Majorana零能模发生共振耦合, 则可以实现与超导相位无关的非阿贝尔编织操作. 因此所设计方案为Majorana费米子的非阿贝尔编织操作提供一种新的方式, 这些发现可能在拓扑量子计算的实现中具有潜在的应用价值.
    We study the resonance exchanges of two chiral Majorana fermions in two distinct systems theoretically in this work: one is an isolated Majorana zero mode interacting with complexes formed by two chiral Majorana fermions and a Majorana zero mode, and the other involves isolated quantum dots that are coupled to a system composed of Majorana fermions and a quantum dot. Our research results reveal that both of these coupled systems can facilitate the effective transmissions of the two chiral Majorana fermions as $ {\gamma _1} \to - {\gamma _2} $and $ {\gamma _2} \to - {\gamma _1} $, and the resonant tunneling effects in the two systems are equivalent. Therefore, quantum dots can replace Majorana zero modes to achieve resonant tunneling. In order to observe the resonance exchange of two chiral Majorana fermions with the two quantum dots, a circuit based on anomalous quantum Hall insulator proximity-coupled with s-wave superconductor is proposed as shown in figure. The numerical results indicate that the resonant exchange of chiral Majorana fermions can be modulated by the coupling strength between the two quantum dots, and it is particularly noteworthy that the tunneling process is independent of the superconducting phase. If one of the chiral Majorana fermions undergoes resonance coupling with another quantum dot or Majorana zero mode, an additional negative sign is obtained, leading to $ - {\gamma _2} \to {\gamma _1} $. After experiencing two resonance exchange processes, the final result is $ {\gamma _1} \to {\gamma _2} $ and $ {\gamma _2} \to - {\gamma _1} $, which implies the realization of non-Abelian braiding operations. Our conclusion is that the modulation of coupling strength between two quantum dots can be used to achieve the switch of Majorana fermions braiding-like operation, which is independent of superconducting phase. Therefore, the designed scheme provides a new way for adjusting the braiding-like operation of Majorana fermions. These findings may have potential applications in the realization of topological quantum computers.
      通信作者: 刘建军, liujj@hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274305, 12074097)、河北省自然科学基金(批准号: A2022106001)和河北省教育厅科技计划(批准号: QN2022195)资助的课题.
      Corresponding author: Liu Jian-Jun, liujj@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274305, 12074097), the Natural Science Foundation of Hebei Province, China (Grant No. A2022106001), and the Science and Technology Project of Hebei Education Department, China (Grant No. QN2022195).
    [1]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [2]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [3]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 6084Google Scholar

    [4]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [6]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [7]

    Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar

    [8]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512(RGoogle Scholar

    [9]

    Wu H B, Zhang Y T, Liu J J 2018 J. Appl. Phys. 124 084301Google Scholar

    [10]

    Wu H B, Liu J J 2021 Phys. Rev. B 103 115430Google Scholar

    [11]

    He Q L, Pan L, Stern A L, Burksed E C, Che X Y, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X F, Chen Z J, Nie T X, Shao Q M, Fan Y B, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [12]

    Ji W, Wen X G 2018 Phys. Rev. Lett. 120 107002Google Scholar

    [13]

    Li Y H, Liu J, Liu H, Jiang H, Sun Q F, Xie X C 2018 Phys. Rev. B 98 045141Google Scholar

    [14]

    Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar

    [15]

    梁奇锋, 王志, 川上拓人, 胡晓 2020 69 117102Google Scholar

    Liang Q F, Wang Z, Kawakami T, Hu X 2020 Acta Phys. Sin. 69 117102Google Scholar

    [16]

    Alicea J, Oreg Y, Refael G, Oppen F V, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

    [17]

    Lian B, Wang J, Sun X Q, Vaezi A, Zhang S C 2018 Phys. Rev. B 97 125408Google Scholar

    [18]

    Yang N X, Yan Q, Sun Q F 2022 Phys. Rev. B 105 125414Google Scholar

    [19]

    Beenakker C W J, Baireuther P, Herasymenko Y, Adagideli I, Wang L, Akhmerov A R 2019 Phys. Rev. Lett. 122 146803Google Scholar

    [20]

    Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Nat. Acad. Sci. 115 10938Google Scholar

    [21]

    ZhouY F, Hou Z, Sun Q F 2019 Phys. Rev. B 99 195137Google Scholar

    [22]

    Yan Q, Sun Q F 2021 Chin. Phys. B 30 040303Google Scholar

    [23]

    周洋, 郭健宏 2015 64 167302Google Scholar

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302Google Scholar

    [24]

    王素新, 李玉现, 王宁, 刘建军 2016 65 137302Google Scholar

    Wang S X, Li Y X, Wang N, Liu J J 2016 Acta Phys. Sin. 65 137302Google Scholar

    [25]

    Majek P, Wójcik K P, Weymann I 2022 Phys. Rev. B 105 075418Google Scholar

    [26]

    Feng G H, Zhang H H 2022 Phys. Rev. B 105 035148Google Scholar

    [27]

    Wu H B, Liu Y J, Liu Y D, Liu J J 2024 J. Phys. Condens. Matter 36 345301Google Scholar

    [28]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) pp235–240

  • 图 1  (a)孤立量子点耦合导线-量子点体系的共振隧穿模型; (b)孤立Majorana零模$ {\gamma _{01}} $耦合两个手性Majorana费米子$ {\gamma _1} $(蓝线) $ {\gamma _2} $(红线)-Majorana零模$ {\gamma _{02}} $复合体系模型; (c)孤立Majorana零模耦合两个手性Majorana费米子-Majorana零模模型实现共振隧穿后再耦合另外一个Majorana零模实现编织模型

    Fig. 1.  (a) Resonance tunneling model of isolated quantum dot coupled leads-quantum dot system; (b) the isolated Majorana zero mode coupling with two chiral Majorana fermions $ {\gamma _1} $(blue line) $ {\gamma _2} $ (red line) -Majorana zero mode $ {\gamma _{02}} $ system model; (c) isolated Majorana zero mode coupling with two chiral Majorana fermions-Majorana zero mode model to achieve resonance tunneling, followed by coupling with another Majorana zero mode to achieve braiding model.

    图 2  孤立量子点耦合量子点-TSC结构的电路示意图

    Fig. 2.  Circuit diagram of isolated quantum dot (QD2) coupled with quantum dot (QD1)-TSC system.

    图 3  两个量子点间具有不同的耦合强度下, 有效透射$ \tilde T $与两个量子点能级$ {\varepsilon _{{d_1}}} $和$ {\varepsilon _{{d_2}}} $的函数关系 (a) tdd = 0 meV; (b) tdd = 0.025 meV; (c) tdd = 0.05 meV; (d) tdd = 0.1 meV. 其中$ {\tilde \varGamma _1} = {\tilde \varGamma _2} = 1 \;{\text{meV}} $, 温度为20 mK

    Fig. 3.  Relationship between effective transmission $ \tilde T $ and the energy levels $ {\varepsilon _{{d_1}}} $ and $ {\varepsilon _{{d_2}}} $ of the two quantum dots with different coupling strengths: (a) tdd = 0 meV; (b) tdd = 0.025 meV; (c) tdd = 0.05 meV; (d) tdd = 0.1 meV. Here $ {\tilde \varGamma _1} = {\tilde \varGamma _2} = 1 \;{\text{meV}} $, the temperature is set to 20 mK.

    图 4  两个量子点间耦合强度的不同情况下, 电导G与两个量子点能级$ {\varepsilon _{{d_1}}} $和$ {\varepsilon _{{d_2}}} $的函数关系 (a), (b)分别对应于$ {t_{dd}} $= 0 meV的电导G3G4; (c), (d)分别对应于$ {t_{dd}} $= 0.025 meV的电导G3G4; (e), (f)分别对应于$ {t_{dd}} $= 0.05 meV的电导G3G4; (g), (h)分别对应于$ {t_{dd}} $= 0.1 meV的电导G3G4. 其他参数与图3(a)中使用的参数相同

    Fig. 4.  Relationship between conductance G and energy levels of two quantum dots $ {\varepsilon _{{d_1}}} $, $ {\varepsilon _{{d_2}}} $at different coupling strengths: (a), (b) Corresponds to conductance G3 and G4 with $ {t_{dd}} $= 0 meV, respectively; (c), (d) corresponds to conductance G3 and G4, respectively, with $ {t_{dd}} $= 0.025 meV; (e), (f) corresponds to conductance G3 and G4 , respectively, with $ {t_{dd}} $=0.05 meV; (g), (h) corresponds to conductance G3 and G4, respectively, with $ {t_{dd}} $= 0.1 meV. Other parameters are the same as those used in Fig.3(a).

    Baidu
  • [1]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [2]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [3]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 6084Google Scholar

    [4]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [6]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [7]

    Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar

    [8]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512(RGoogle Scholar

    [9]

    Wu H B, Zhang Y T, Liu J J 2018 J. Appl. Phys. 124 084301Google Scholar

    [10]

    Wu H B, Liu J J 2021 Phys. Rev. B 103 115430Google Scholar

    [11]

    He Q L, Pan L, Stern A L, Burksed E C, Che X Y, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X F, Chen Z J, Nie T X, Shao Q M, Fan Y B, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [12]

    Ji W, Wen X G 2018 Phys. Rev. Lett. 120 107002Google Scholar

    [13]

    Li Y H, Liu J, Liu H, Jiang H, Sun Q F, Xie X C 2018 Phys. Rev. B 98 045141Google Scholar

    [14]

    Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar

    [15]

    梁奇锋, 王志, 川上拓人, 胡晓 2020 69 117102Google Scholar

    Liang Q F, Wang Z, Kawakami T, Hu X 2020 Acta Phys. Sin. 69 117102Google Scholar

    [16]

    Alicea J, Oreg Y, Refael G, Oppen F V, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

    [17]

    Lian B, Wang J, Sun X Q, Vaezi A, Zhang S C 2018 Phys. Rev. B 97 125408Google Scholar

    [18]

    Yang N X, Yan Q, Sun Q F 2022 Phys. Rev. B 105 125414Google Scholar

    [19]

    Beenakker C W J, Baireuther P, Herasymenko Y, Adagideli I, Wang L, Akhmerov A R 2019 Phys. Rev. Lett. 122 146803Google Scholar

    [20]

    Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Nat. Acad. Sci. 115 10938Google Scholar

    [21]

    ZhouY F, Hou Z, Sun Q F 2019 Phys. Rev. B 99 195137Google Scholar

    [22]

    Yan Q, Sun Q F 2021 Chin. Phys. B 30 040303Google Scholar

    [23]

    周洋, 郭健宏 2015 64 167302Google Scholar

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302Google Scholar

    [24]

    王素新, 李玉现, 王宁, 刘建军 2016 65 137302Google Scholar

    Wang S X, Li Y X, Wang N, Liu J J 2016 Acta Phys. Sin. 65 137302Google Scholar

    [25]

    Majek P, Wójcik K P, Weymann I 2022 Phys. Rev. B 105 075418Google Scholar

    [26]

    Feng G H, Zhang H H 2022 Phys. Rev. B 105 035148Google Scholar

    [27]

    Wu H B, Liu Y J, Liu Y D, Liu J J 2024 J. Phys. Condens. Matter 36 345301Google Scholar

    [28]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) pp235–240

  • [1] 孟豪, 吴修强. 自旋混合库珀对引起的Josephson电流.  , 2023, 72(22): 227402. doi: 10.7498/aps.72.20231008
    [2] 郭家明, 薛迅. 克尔度规引力场对费米子的量子散射.  , 2022, 71(21): 210401. doi: 10.7498/aps.71.20220876
    [3] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究.  , 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [4] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模.  , 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [5] 李牮. 基于Yu-Shiba-Rusinov态的拓扑超导理论.  , 2020, 69(11): 117401. doi: 10.7498/aps.69.20200831
    [6] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎.  , 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [7] 武璟楠, 徐志浩, 陆展鹏, 张云波. 一维化学势调制的p波超导体中的拓扑量子相变.  , 2020, 69(7): 070302. doi: 10.7498/aps.69.20191868
    [8] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模.  , 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [9] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性.  , 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [10] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究.  , 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [11] 宋戈, 许静平, 羊亚平. 三层单负材料结构中电磁波模分析.  , 2011, 60(7): 074101. doi: 10.7498/aps.60.074101
    [12] 陈静, 蒋震宗, 陆加佳, 刘永生, 朱燕艳. 纳米硅结构中分裂能级对光电输运特性的影响.  , 2010, 59(12): 8862-8869. doi: 10.7498/aps.59.8862
    [13] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算.  , 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [14] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响.  , 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [15] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器.  , 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
    [16] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射.  , 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [17] 胡振华, 黄德修. 用Ξ形四能级模型研究非对称耦合量子阱非定域激子复合发光.  , 2004, 53(4): 1195-1200. doi: 10.7498/aps.53.1195
    [18] 朱 莉, 郑厚植, 谭平恒, 周 霞, 姬 扬, 杨富华, 李桂荣, 曾宇昕. 能级填充对量子阱光学性质的影响.  , 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
    [19] 赵继刚, 邵彬, 王太宏. InAs自组装量子点GaAs肖特基二级管的电学特性研究.  , 2002, 51(6): 1355-1359. doi: 10.7498/aps.51.1355
    [20] 王传奎, 江兆潭. 一类弯曲量子线的量子束缚态.  , 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
计量
  • 文章访问数:  1531
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-26
  • 修回日期:  2024-06-13
  • 上网日期:  2024-06-24
  • 刊出日期:  2024-07-05

/

返回文章
返回
Baidu
map