搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双量子点结构中Majorana费米子的噪声特性

周洋 郭健宏

引用本文:
Citation:

双量子点结构中Majorana费米子的噪声特性

周洋, 郭健宏

Shot noise characteristics of Majorana fermions in transport through double quantum dots

Zhou Yang, Guo Jian-Hong
PDF
导出引用
  • Majorana费米子是其自身的反粒子, 在拓扑量子计算中有着重要的应用. 利用粒子数表象下的量子主方程方法, 研究双量子点与Majorana费米子混合结构的电子输运特性, 特别是散粒噪声. 有无Majorana费米子耦合的电流与散粒噪声存在明显差别: 有Majorana费米子耦合时稳态电流差呈反对称, 噪声谱呈现相干振荡并且低频噪声显著增强. 量子点与Majorana费米子对称弱耦合时, 零频噪声由峰变为谷, 并且边谷展宽逐渐减小; 当对称强耦合时, 零频噪声的谷深增加, 边谷向高频端移动. 改变系统与电极的耦合强度时, 零频噪声由谷变成峰. 因此, 稳态电流结合散粒噪声可以探测双量子点结构中Majorana费米子是否存在.
    Majorana fermions are their own antiparticles, which play an important role in fault-tolerant topological quantum computation. Recently, the search for Majorana fermions in condensed matter physics, is attracting a great deal of attention as quasiparticles emerge. In this paper we consider a specific model consisting of double quantum dots and a tunnel-coupled semiconductor nanowire on an s-wave superconductor, since the nanowire may support Majorana fermions under appropriate conditions. We study the electron transport through the double quantum dots by using the particle-number resolved master equation. We pay particular attention to the effects of Majorana's dynamics on the current fluctuation (shot noise). It is shown that the current and the shot noise measurement can be used to distinguish Majorana fermions from the usual resonant-tunneling levels. When there exist Majorana fermions coupling to the double quantum dots, a difference between the steady-state source and drain currents depends on the asymmetry of electron tunneling rates. The asymmetric behaviors of the currents can reveal the essential features of the Majorana fermion. Moreover, the dynamics of Majorana coherent oscillations between the semiconductor nanowire and the double quantum dots is revealed in the shot noise, via spectral dips together with a pronounced zero-frequency noise enhancement effect. We find, on the one hand, that the peak of the zero-frequency noise becomes a dip in the case of weak coupling between double quantum dots and the nanowire; on the other hand, for the strong coupling the dip of the zero-frequency noise becomes even further deep with side dips towards high frequency regimes. Furthermore, the dip of the zero-frequency noise disappears and a zero-frequency noise peak gradually develops when the dot-electrode coupling is tuned by gate voltage. As a result, the combination of the current and the shot noise through double quantum dots allows one to probe the presence of Majorana fermions.
    • 基金项目: 北京市教委科研基金(批准号: KM201210028008)资助的课题.
    • Funds: Project supported by the Scientific Research Foundation of Beijing Education Commission, China (Grant No. KM201210028008).
    [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083

    [3]

    Kitaev A Y 2001 Phys.-Uspekhi 44 131

    [4]

    Das Sarma S, Nayak C, Tewari S 2006 Phys. Rev. B 73 220502(R)

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [6]

    Zhang C W, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001

    [11]

    Volovik G E 1999 JETP Lett. 70 609

    [12]

    San-Jose P, Cayao J, Prada E, Aguado R 2014 arXiv:1409.7306v2 [cond-mat]

    [13]

    Franz M 2013 Nature Nanotech. 8 149

    [14]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nature Phys. 8 887

    [16]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [17]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nature Phys. 7 412

    [18]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511

    [19]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [20]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308(R)

    [21]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [22]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [23]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [24]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [25]

    Hützen R, Zazunov A, Braunecker B, Levy Yeyati A, Egger R 2012 Phys. Rev. Lett. 109 166403

    [26]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [27]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

  • [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083

    [3]

    Kitaev A Y 2001 Phys.-Uspekhi 44 131

    [4]

    Das Sarma S, Nayak C, Tewari S 2006 Phys. Rev. B 73 220502(R)

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [6]

    Zhang C W, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001

    [11]

    Volovik G E 1999 JETP Lett. 70 609

    [12]

    San-Jose P, Cayao J, Prada E, Aguado R 2014 arXiv:1409.7306v2 [cond-mat]

    [13]

    Franz M 2013 Nature Nanotech. 8 149

    [14]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nature Phys. 8 887

    [16]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [17]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nature Phys. 7 412

    [18]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511

    [19]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [20]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308(R)

    [21]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [22]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [23]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [24]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [25]

    Hützen R, Zazunov A, Braunecker B, Levy Yeyati A, Egger R 2012 Phys. Rev. Lett. 109 166403

    [26]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [27]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制.  , 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [3] 郭家明, 薛迅. 克尔度规引力场对费米子的量子散射.  , 2022, 71(21): 210401. doi: 10.7498/aps.71.20220876
    [4] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [5] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性.  , 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [6] 武璟楠, 徐志浩, 陆展鹏, 张云波. 一维化学势调制的p波超导体中的拓扑量子相变.  , 2020, 69(7): 070302. doi: 10.7498/aps.69.20191868
    [7] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量.  , 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [8] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声.  , 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [9] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响.  , 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [10] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究.  , 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [11] 唐冬和, 杜磊, 王婷岚, 陈华, 陈文豪. 纳米尺度MOSFET过剩噪声的定性分析.  , 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [12] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究.  , 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [13] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声.  , 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [14] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱.  , 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [15] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [16] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究.  , 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [17] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声.  , 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [18] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应.  , 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [19] 张志勇, 王太宏. 用散粒噪声测量碳纳米管中Luttinger参数.  , 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声.  , 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  6766
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-22
  • 修回日期:  2015-04-17
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map