Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical and Thermal Transport Study of the Heavy Fermion Superconductor CeRh2As2

WAN Zhenzhe WANG Hanru WANG Jing Grzegorz Chajewski Dariusz Kaczorowski LI Shiyan

Citation:

Electrical and Thermal Transport Study of the Heavy Fermion Superconductor CeRh2As2

WAN Zhenzhe, WANG Hanru, WANG Jing, Grzegorz Chajewski, Dariusz Kaczorowski, LI Shiyan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As a recently discovered Ce-based 122-type heavy-fermion superconductor, CeRh2As2 has attracted significant attention due to its non-Fermi-liquid behavior and two-phase superconductivity. The tetragonal crystal structure of CeRh2As2 maintains global centrosymmetry which allows even-parity and odd-parity superconducting states to be distinct rather than mixed. The Ce site exhibits local inversion symmetry breaking which enables staggered Rashba spin-orbit coupling. This may lead to the c axis field-induced transition between two superconducting phases and high critical field. Given the novel physics in CeRh2As2, including a possible quantum critical point and a spin-fluctuation-mediated superconducting pairing mechanism, this work investigates the ultra-low-temperature electrical and thermal transport properties of CeRh2As2 under various magnetic fields. The zero-field resistivity reveals a superconducting transition at the critical temperature Tc = 0.34 K. Under 1 T magnetic field, a resistivity minimum emerges near T0≈0.42 K, likely arising from partial gap opening due to Fermi surface nesting, indicating the system enters into a magnetically ordered state, while this feature isn’t observed in zero field. In the temperature range from T0 to 2 K, the system exhibits non-Fermi-liquid behavior ρ~T0.44, suggesting proximity to a quantum critical point. The superconducting transition is fully suppressed at 7 T, with resistivity recovering Fermi-liquid behavior at low temperature. No significant anomaly is observed near Tc in the zero-field thermal conductivity of CeRh2As2. This absence of anomaly may be attributed to the high residual resistivity of the sample, and the reduction in carrier density during the superconducting transition and the T0 phase transition. It requirs optimizing single crystal growth to reduce the effects of lattice defects or chemical disorder on thermal transport. Upon applying magnetic field, the thermal conductivity curve exhibits a small upward shift relative to its zero-field curve. At 0.15 K, thermal conductivity rises with increasing magnetic field and saturates at higher fields above 5 T. In the normal state at 7 T, we find that the electrical resistivity and thermal conductivity satisfy the Wiedemann-Franz law, indicating that the charge and heat transport are governed by the same quasiparticles, consistent with the Fermi-liquid behavior observed in resistivity under this field.
  • [1]

    Norman M R 2011 Science 332 196

    [2]

    Li Y, Sheng Y T, Yang Y F 2021 Acta. Phys. Sin. 70 017402(in Chinese)[李宇,盛玉韬,杨义峰2021 70 017402]

    [3]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schafer H 1979 Phys. Rev. Lett. 43 1892

    [4]

    Smidman M, Stockert O, Nica E M, Liu Y, Yuan H Q, Si Q M, Steglich F 2023 Rev. Mod. Phys. 95 031002

    [5]

    Grosche F, Julian S, Mathur N, Lonzarich G 1996 Physica B 223 50

    [6]

    Araki S, Nakashima M, Settai R, Kobayashi T C, Onuki Y 2002 J. Phys. Condens. Matter 14 L377

    [7]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104

    [8]

    Grosche F, Walker I, Julian S, Mathur N, Freye D, Steiner M, Lonzarich G 2001 J. Phys. Condens. Matter 13 2845

    [9]

    Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta. Phys. Sin. 68 177101(in Chinese)[谢武,沈斌,张勇军,郭春煜,许嘉诚,路欣,袁辉球2019 68 177101]

    [10]

    Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Küchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C, Hassinger E 2021 Science 373 1012

    [11]

    Chajewski G, Kaczorowski D 2024 Phys. Rev. Lett. 132 076504

    [12]

    Hafner D, Khanenko P, Eljaouhari E O, Küchler R, Banda J, Bannor N, Lühmann T, Landaeta J F, Mishra S, Sheikin I, Hassinger E, Khim S, Geibel C, Zwicknagl G, Brando M 2022 Phys. Rev. X 12 011023

    [13]

    Khim S, Stockert O, Brando M, Geibel C, Baines C, Hicken T J, Luetkens H, Das D, Shiroka T, Guguchia Z, Scheuermann R 2025 Phys. Rev. B 111 115134

    [14]

    Schmidt B, Thalmeier P 2024 Phys. Rev. B 110 075154

    [15]

    Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C 2013 Science 339 933

    [16]

    Movshovich R, Jaime M, Thompson J D, Petrovic C, Fisk Z, Pagliuso P G, Sarrao J L 2001 Phys. Rev. Lett. 86 5152

    [17]

    Metz T, Bae S, Ran S, Liu I L, Eo Y S, Fuhrman W T, Agterberg D F, Anlage S M, Butch N P, Paglione J 2019 Phys. Rev. B 100 220504

    [18]

    Villegas H A V 2013Ph. D. Dissertation(Dresden:Dresden University of Technology)

    [19]

    Chajewski G, Szymanski D, Daszkiewicz M, Kaczorowski D 2024 Mater. Horiz. 11 855

    [20]

    Onishi S, Stockert U, Khim S, Banda J, Brando M, Hassinger E 2022 Front. Electron. Mater 2 880579

    [21]

    Khanenko P, Hafner D, Semeniuk K, Banda J, Lühmann T, Bärtl F, Kotte T, Wosnitza J, Zwicknagl G, Geibel C, Landaeta J F, Khim S, Hassinger E, Brando M 2025 Phys. Rev. B 111 045162

    [22]

    Mishra S, Liu Y, Bauer E D, Ronning F, Thomas S M 2022 Phys. Rev. B 106 L140502

    [23]

    Hamann S, Zhang J, Jang D, Hannaske A, Steinke L, Lausberg S, Pedrero L, Klingner C, Baenitz M, Steglich F, Krellner C, Geibel C, Brando M 2019 Phys. Rev. Lett. 122 077202

    [24]

    Gruner T, Jang D, Huesges Z, Cardoso-Gil R, Fecher G H, Koza M M, Stockert O, Mackenzie A P, Brando M, Geibel C 2017 Nat. Phys. 13 967

    [25]

    Wu Y, Zhang Y J, Ju S L, Hu Y, Huang Y E, Zhang Y N, Zhang H L, Zheng H, Yang G W, Eljaouhari E-O, Song B P, Plumb N C, Steglich F, Shi M, Zwicknagl G, Cao C, Yuan H Q, Liu Y 2024 Chin. Phys. Lett. 41 097403

    [26]

    Chen T, Siddiquee H, Xu Q Z, Rehfuss Z, Gao S Y, Lygouras C, Drouin J, Morano V, Avers K E, Schmitt C J, Podlesnyak A, Paglione J, Ran S, Song Y, Broholm C 2024 Phys. Rev. Lett. 133 266505

    [27]

    Weng Z F, Smidman M, Jiao L, Lu X, Yuan H Q 2016 Rep. Prog. Phys. 79 094503

    [28]

    Doniach S 1977 Physica B+C 91 231

    [29]

    Coleman P, Schofield A J 2005 Nature 433 226

    [30]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501

    [31]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [32]

    Cohn J L, Skelton E F, Wolf S A, Liu J Z, Shelton R N 1992 Phys. Rev. B 45 13144

    [33]

    Yu R C, Salamon M B, Lu J P, Lee W C 1992 Phys. Rev. Lett. 69 1431

    [34]

    Landaeta J F, León A M, Zwickel S, Lühmann T, Brando M, Geibel C, Eljaouhari E O, Rosner H, Zwicknagl G, Hassinger E, Khim S 2022 Phys. Rev. B 106 014506

    [35]

    Lowell J, Sousa J B 1970 J. Low Temp. Phys. 3 65

    [36]

    Willis J O, Ginsberg D M 1976 Phys. Rev. B 14 1916

    [37]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003

    [38]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003

  • [1] Li Hong-Ming,  Dong Chuang,  Wang Qing,  Li Xiao-Na,  Zhao Ya-Jun,  Zhou Da-Yu. Correlation between electrical resistivity and strength of copper alloy and material classification. Acta Physica Sinica, doi: 10.7498/aps.68.20181498
    [2] Li Qing, Wang Min-Xiang, Liu Tong, Mu Qing-Ge, Ren Zhi-An, Li Shi-Yan. Superconducting gap of quasi-one-dimensional Cr-based superconductor RbCr3As3. Acta Physica Sinica, doi: 10.7498/aps.67.20181692
    [3] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, doi: 10.7498/aps.66.047201
    [4] Li Rui, Zuo Xiao-Wei, Wang En-Gang. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy. Acta Physica Sinica, doi: 10.7498/aps.66.027401
    [5] Sun Li-Jun, Dai Fei, Luo Jiang-Shan, Yi Yong, Yang Meng-Sheng, Zhang Ji-Cheng, Li Jun, Lei Hai-Le. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, doi: 10.7498/aps.65.137303
    [6] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, doi: 10.7498/aps.62.017601
    [7] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, doi: 10.7498/aps.61.176103
    [8] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, doi: 10.7498/aps.61.206803
    [9] Zhang Zhi-Guo. SnO2:(Cu,In) films with high transmittance in ultraviolet region. Acta Physica Sinica, doi: 10.7498/aps.59.8172
    [10] Zhang Ming-Xiao, Tian Xue-Lei, Guo Feng-Xiang. Design and application of a device based on electromagnetic induction principle for electrical resistivity qualitative measurement of liquid and solid metals. Acta Physica Sinica, doi: 10.7498/aps.58.6080
    [11] Fan Fei, Ban Chun-Yan, Wang Yang, Ba Qi-Xian, Cui Jian-Zhong. The resistivity evolution with temperature of 7050 aluminium alloy by different casting methods. Acta Physica Sinica, doi: 10.7498/aps.58.638
    [12] Bie Shao-Wei, Jiang Jian-Jun, Ma Qiang, Du Gang, Yuan Lin, Di Yong-Jiang, Feng Ze-Kun, He Hua-Hui. Soft magnetic properties and microwave permeability of multilayer nanogranular films with high resistivity. Acta Physica Sinica, doi: 10.7498/aps.57.2514
    [13] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, doi: 10.7498/aps.56.6118
    [14] Zhou Yun, Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang. Resistivity of polyaniline nanotubes doped with naphthalene sulfonic acid: dependence on moisture and ethanol. Acta Physica Sinica, doi: 10.7498/aps.54.228
    [15] Wang Yuan, Xu Ke-Wei. Cu-W Thin film characterized by surface fractal and resistivity. Acta Physica Sinica, doi: 10.7498/aps.53.900
    [16] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, doi: 10.7498/aps.52.175
    [17] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, doi: 10.7498/aps.51.679
    [18] WANG QIANG, LU KUN-QUAN, LI YAN-XIANG. THE RELATIONSHIP BETWEEN ELECTRICAL RESISTIVITY, THERMOPOWER AND TEMPERATURE FOR LIQUID InSb. Acta Physica Sinica, doi: 10.7498/aps.50.1355
    [19] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, doi: 10.7498/aps.50.2044
    [20] YANG HONG-SHUN, YU MIN, LI SHI-YAN, LI PENG-CHENG, CHAI YI SHENG, ZHANG LIANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE THERMOPOWER AND RESISTIVITY OF A NEW SUPERCONDUCTOR MgB2. Acta Physica Sinica, doi: 10.7498/aps.50.1197
Metrics
  • Abstract views:  37
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map