Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical and thermal transport of heavy Fermion superconductor CeRh2As2

WAN Zhenzhe WANG Hanru WANG Jing GRZEGORZ Chajewski DARIUSZ Kaczorowski LI Shiyan

Citation:

Electrical and thermal transport of heavy Fermion superconductor CeRh2As2

WAN Zhenzhe, WANG Hanru, WANG Jing, GRZEGORZ Chajewski, DARIUSZ Kaczorowski, LI Shiyan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • CeRh2As2, as a recently discovered Ce-based 122-type heavy-fermion superconductor, has attracted much attention due to its non-Fermi-liquid behavior and two-phase superconductivity. The tetragonal crystal structure of CeRh2As2 maintains global centrosymmetry, which makes even-parity and odd-parity superconducting states different rather than mixed. The Ce site exhibits local inversion symmetry breaking, which results in staggered Rashba spin-orbit coupling. This may lead to the c axis field-induced transition between two superconducting phases and high critical field. Given the novel physics in CeRh2As2, including a possible quantum critical point and a spin-fluctuation-mediated superconducting pairing mechanism, the ultra-low-temperature electrical and thermal transport properties of CeRh2As2 under various magnetic fields are investigated in this work. The zero-field resistivity reveals a superconducting transition at the critical temperature Tc = 0.34 K. At a magnetic field of 1 T, a minimum resistivity appears near T0$ \approx $0.42 K, which may be due to partial gap opening caused by Fermi surface nesting, indicating that the system enters into a magnetically ordered state, which is not observed in zero field. In the temperature range from T0 to 2 K, the system exhibits non-Fermi-liquid behavior $ \rho\sim{{T}}^{0.44} $, indicating proximity to a quantum critical point. The superconducting transition is fully suppressed at 7 T, with resistivity recovering Fermi-liquid behavior at low temperature. No significant anomaly is observed in the zero-field thermal conductivity of CeRh2As2 near Tc. This absence of anomaly may be attributed to the high residual resistivity of the sample, and the reduction in carrier density during the superconducting transition and the T0 phase transition. It requires optimizing single crystal growth to reduce the effects of lattice defects or chemical disorder on thermal transport. Upon applying magnetic field, the thermal conductivity curve exhibits a small upward shift relative to its zero-field curve. At 0.15 K, thermal conductivity rises with the increase of magnetic field and is saturated at higher fields (above 5 T). In the normal state at 7 T, it is found that the electrical resistivity and thermal conductivity satisfy the Wiedemann-Franz law, indicating that the charge transfer and the heat transport are governed by the same quasiparticles, which is consistent with the Fermi-liquid behavior observed in resistivity under this field.
  • 图 1  (a) CeRh2As2单晶的XRD谱, 插图为单晶的光学照片以及晶体结构示意图; (b) μ0H = 1 T下CeRh2As2单晶直流磁化率的倒数, 磁场方向分别沿ab面(红色)和晶体c轴(蓝色), 虚线斜率用于计算Ce3+的有效磁矩; (c) 零场下CeRh2As2单晶电阻率随温度变化, 插图为低于2 K的电阻率以及粘有4个电极的样品光学照片

    Figure 1.  (a) XRD pattern of CeRh2As2 single crystal, with the inset displaying the optical image of the single crystal and a schematic illustration of its crystal structure. (b) Reciprocal of the direct current magnetic susceptibility of CeRh2As2 single crystals at μ0H = 1 T, with magnetic field in the ab plane (red) and along the c axis (blue). The slope of the dashed line is used to calculate the effective magnetic moment of Ce3+. (c) Temperature dependence of the resistivity of CeRh2As2 single crystal in zero field. The inset displays the resistivity below 2 K along with an optical image of the sample with four electrodes.

    图 2  (a) CeRh2As2单晶在50 mK—0.6 K温区、不同磁场(最高到7 T)下的电阻率, 超导临界温度Tc随磁场增强逐渐降低, 并在7 T时被完全压制; (b) 不同磁场下, 温度低于2 K时的电阻率, 黑色小箭头指向T0异常, 随磁场增大, 电阻率在前一组数据偏移量的基础上偏移–10 μΩ, 虚线箭头指示偏移方向; (c) 主图为磁场7 T、温度低于0.5 K时的电阻率, 黑色虚线为$ \rho={\rho}_{0}+{A}{{T}}^{{\alpha}} $的拟合曲线, 插图中黑色虚线为温度低于0.15 K时, $ \rho $与T2的线性拟合结果; (d) CeRh2As2超导相图, 黑色上三角和蓝色正方形分别表示电阻率测量的超导临界温度$ {{T}}_{{{\mathrm{c}}}}^{{{\mathrm{mid}}}} $与T0异常; 红色星形为交流磁化率测量结果, 数据来源于文献[10]

    Figure 2.  (a) Resistivity of CeRh2As2 single crystal measured between 50 mK and 0.6 K under various magnetic fields (up to 7 T). The superconducting critical temperature Tc decreases monotonically with increasing field and is fully suppressed at 7 T. (b) Resistivity below 2 K under various magnetic fields. Black arrows mark the T0 anomaly. Each successive curve is vertically offset by -10 μΩ relative to previous one, with dashed arrow indicating the offset direction. (c) Main panel: Resistivity at 7 T below 0.5 K. The black dashed curve represents the fit to $ \rho={\rho}_{0}+{A}{{T}}^{{\alpha}} $. Inset: Linear fit (black dashed line) to $ \rho({T}) $vs. T2 under 0.15 K; (d) Superconducting phase diagram of CeRh2As2. Black upward triangles and blue squares denote the $ {{T}}_{{{\mathrm{c}}}}^{{{\mathrm{mid}}}} $ and T0 anomaly from resistivity measurements, respectively. Red stars are from AC magnetic susceptibility data reproduced from Ref.[10].

    图 3  (a) 零场CeRh2As2单晶热导率的温度依赖, 黑色箭头指向超导临界温度Tc, 高于Tc和低于0.57Tc的拟合曲线分别为绿色和紫色, 并以虚线向更低温区延伸; (b) 加场(最高到7 T)下CeRh2As2单晶的极低温热导率, 黑色虚线为正常态Wiedemann-Franz定律的预期值$ {{L}}_{0}{/}{\rho}_{0}{(7 \;{\mathrm{T}})} $; (c)左轴为几种典型超导体的归一化剩余线性项κ0/T对归一化磁场强度H/Hc2的依赖关系, 右轴为CeRh2As2单晶在T = 0.15 K时κ/T的磁场依赖关系(红色方形)

    Figure 3.  (a) Temperature dependence of the zero-field thermal conductivity of CeRh2As2 single crystal, with the black arrow indicating the superconducting critical temperature Tc. The fitting curves above Tc and below 0.57Tc are green and purple, respectively, and are extended to lower temperatures with dashed lines. (b) Low-temperature thermal conductivity of CeRh2As2 single crystal under applied fields (up to 7 T), with the black dashed line representing the normal-state Wiedemann-Franz law expectation $ {{L}}_{0}{/}{\rho}_{0}{(7 \; {\mathrm{T}})} $. (c) Left axis: Magnetic field dependence of the normalized residual linear term κ0/T versus normalized magnetic field strength H/Hc2 for several typical superconductors; Right axis: Magnetic field dependence of κ/T for the CeRh2As2 single crystal at T = 0.15 K (red squares).

    Baidu
  • [1]

    Norman M R 2011 Science 332 196Google Scholar

    [2]

    李宇, 盛玉韬, 杨义峰 2021 70 017402Google Scholar

    Li Y, Sheng Y T, Yang Y F 2021 Acta. Phys. Sin. 70 017402Google Scholar

    [3]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schafer H 1979 Phys. Rev. Lett. 43 1892Google Scholar

    [4]

    Smidman M, Stockert O, Nica E M, Liu Y, Yuan H Q, Si Q M, Steglich F 2023 Rev. Mod. Phys. 95 031002Google Scholar

    [5]

    Grosche F, Julian S, Mathur N, Lonzarich G 1996 Physica B 223 50Google Scholar

    [6]

    Araki S, Nakashima M, Settai R, Kobayashi T C, Onuki Y 2002 J. Phys. Condens. Matter 14 L377Google Scholar

    [7]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104Google Scholar

    [8]

    Grosche F, Walker I, Julian S, Mathur N, Freye D, Steiner M, Lonzarich G 2001 J. Phys. Condens. Matter 13 2845Google Scholar

    [9]

    谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球 2019 68 177101Google Scholar

    Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta. Phys. Sin. 68 177101Google Scholar

    [10]

    Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Küchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C, Hassinger E 2021 Science 373 1012Google Scholar

    [11]

    Chajewski G, Kaczorowski D 2024 Phys. Rev. Lett. 132 076504Google Scholar

    [12]

    Hafner D, Khanenko P, Eljaouhari E O, Küchler R, Banda J, Bannor N, Lühmann T, Landaeta J F, Mishra S, Sheikin I, Hassinger E, Khim S, Geibel C, Zwicknagl G, Brando M 2022 Phys. Rev. X 12 011023

    [13]

    Khim S, Stockert O, Brando M, Geibel C, Baines C, Hicken T J, Luetkens H, Das D, Shiroka T, Guguchia Z, Scheuermann R 2025 Phys. Rev. B 111 115134Google Scholar

    [14]

    Schmidt B, Thalmeier P 2024 Phys. Rev. B 110 075154Google Scholar

    [15]

    Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C 2013 Science 339 933Google Scholar

    [16]

    Movshovich R, Jaime M, Thompson J D, Petrovic C, Fisk Z, Pagliuso P G, Sarrao J L 2001 Phys. Rev. Lett. 86 5152Google Scholar

    [17]

    Metz T, Bae S, Ran S, Liu I L, Eo Y S, Fuhrman W T, Agterberg D F, Anlage S M, Butch N P, Paglione J 2019 Phys. Rev. B 100 220504Google Scholar

    [18]

    Villegas H A V 2013 Ph. D. Dissertation (Dresden: Dresden University of Technology

    [19]

    Chajewski G, Szymanski D, Daszkiewicz M, Kaczorowski D 2024 Mater. Horiz. 11 855Google Scholar

    [20]

    Onishi S, Stockert U, Khim S, Banda J, Brando M, Hassinger E 2022 Front. Electron. Mater 2 880579Google Scholar

    [21]

    Khanenko P, Hafner D, Semeniuk K, Banda J, Lühmann T, Bärtl F, Kotte T, Wosnitza J, Zwicknagl G, Geibel C, Landaeta J F, Khim S, Hassinger E, Brando M 2025 Phys. Rev. B 111 045162Google Scholar

    [22]

    Mishra S, Liu Y, Bauer E D, Ronning F, Thomas S M 2022 Phys. Rev. B 106 L140502Google Scholar

    [23]

    Hamann S, Zhang J, Jang D, Hannaske A, Steinke L, Lausberg S, Pedrero L, Klingner C, Baenitz M, Steglich F, Krellner C, Geibel C, Brando M 2019 Phys. Rev. Lett. 122 077202Google Scholar

    [24]

    Gruner T, Jang D, Huesges Z, Cardoso-Gil R, Fecher G H, Koza M M, Stockert O, Mackenzie A P, Brando M, Geibel C 2017 Nat. Phys. 13 967Google Scholar

    [25]

    Wu Y, Zhang Y J, Ju S L, Hu Y, Huang Y E, Zhang Y N, Zhang H L, Zheng H, Yang G W, Eljaouhari E O, Song B P, Plumb N C, Steglich F, Shi M, Zwicknagl G, Cao C, Yuan H Q, Liu Y 2024 Chin. Phys. Lett. 41 097403Google Scholar

    [26]

    Chen T, Siddiquee H, Xu Q Z, Rehfuss Z, Gao S Y, Lygouras C, Drouin J, Morano V, Avers K E, Schmitt C J, Podlesnyak A, Paglione J, Ran S, Song Y, Broholm C 2024 Phys. Rev. Lett. 133 266505Google Scholar

    [27]

    Weng Z F, Smidman M, Jiao L, Lu X, Yuan H Q 2016 Rep. Prog. Phys. 79 094503Google Scholar

    [28]

    Doniach S 1977 Physica B+C 91 231Google Scholar

    [29]

    Coleman P, Schofield A J 2005 Nature 433 226Google Scholar

    [30]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501Google Scholar

    [31]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520Google Scholar

    [32]

    Cohn J L, Skelton E F, Wolf S A, Liu J Z, Shelton R N 1992 Phys. Rev. B 45 13144Google Scholar

    [33]

    Yu R C, Salamon M B, Lu J P, Lee W C 1992 Phys. Rev. Lett. 69 1431Google Scholar

    [34]

    Landaeta J F, León A M, Zwickel S, Lühmann T, Brando M, Geibel C, Eljaouhari E O, Rosner H, Zwicknagl G, Hassinger E, Khim S 2022 Phys. Rev. B 106 014506

    [35]

    Lowell J, Sousa J B 1970 J. Low Temp. Phys. 3 65Google Scholar

    [36]

    Willis J O, Ginsberg D M 1976 Phys. Rev. B 14 1916Google Scholar

    [37]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003Google Scholar

    [38]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003Google Scholar

  • [1] ZHU Shaoping. Unified derivation of laser energy deposition coefficient, electron thermal conduction coefficient and resistivity in plasma. Acta Physica Sinica, doi: 10.7498/aps.74.20250340
    [2] Li Hong-Ming,  Dong Chuang,  Wang Qing,  Li Xiao-Na,  Zhao Ya-Jun,  Zhou Da-Yu. Correlation between electrical resistivity and strength of copper alloy and material classification. Acta Physica Sinica, doi: 10.7498/aps.68.20181498
    [3] Li Qing, Wang Min-Xiang, Liu Tong, Mu Qing-Ge, Ren Zhi-An, Li Shi-Yan. Superconducting gap of quasi-one-dimensional Cr-based superconductor RbCr3As3. Acta Physica Sinica, doi: 10.7498/aps.67.20181692
    [4] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, doi: 10.7498/aps.66.047201
    [5] Li Rui, Zuo Xiao-Wei, Wang En-Gang. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy. Acta Physica Sinica, doi: 10.7498/aps.66.027401
    [6] Sun Li-Jun, Dai Fei, Luo Jiang-Shan, Yi Yong, Yang Meng-Sheng, Zhang Ji-Cheng, Li Jun, Lei Hai-Le. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, doi: 10.7498/aps.65.137303
    [7] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, doi: 10.7498/aps.62.017601
    [8] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, doi: 10.7498/aps.61.176103
    [9] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, doi: 10.7498/aps.61.206803
    [10] Zhang Zhi-Guo. SnO2:(Cu,In) films with high transmittance in ultraviolet region. Acta Physica Sinica, doi: 10.7498/aps.59.8172
    [11] Zhang Ming-Xiao, Tian Xue-Lei, Guo Feng-Xiang. Design and application of a device based on electromagnetic induction principle for electrical resistivity qualitative measurement of liquid and solid metals. Acta Physica Sinica, doi: 10.7498/aps.58.6080
    [12] Fan Fei, Ban Chun-Yan, Wang Yang, Ba Qi-Xian, Cui Jian-Zhong. The resistivity evolution with temperature of 7050 aluminium alloy by different casting methods. Acta Physica Sinica, doi: 10.7498/aps.58.638
    [13] Bie Shao-Wei, Jiang Jian-Jun, Ma Qiang, Du Gang, Yuan Lin, Di Yong-Jiang, Feng Ze-Kun, He Hua-Hui. Soft magnetic properties and microwave permeability of multilayer nanogranular films with high resistivity. Acta Physica Sinica, doi: 10.7498/aps.57.2514
    [14] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, doi: 10.7498/aps.56.6118
    [15] Wang Yuan, Xu Ke-Wei. Cu-W Thin film characterized by surface fractal and resistivity. Acta Physica Sinica, doi: 10.7498/aps.53.900
    [16] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, doi: 10.7498/aps.52.175
    [17] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, doi: 10.7498/aps.51.679
    [18] WANG QIANG, LU KUN-QUAN, LI YAN-XIANG. THE RELATIONSHIP BETWEEN ELECTRICAL RESISTIVITY, THERMOPOWER AND TEMPERATURE FOR LIQUID InSb. Acta Physica Sinica, doi: 10.7498/aps.50.1355
    [19] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, doi: 10.7498/aps.50.2044
    [20] YANG HONG-SHUN, YU MIN, LI SHI-YAN, LI PENG-CHENG, CHAI YI SHENG, ZHANG LIANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE THERMOPOWER AND RESISTIVITY OF A NEW SUPERCONDUCTOR MgB2. Acta Physica Sinica, doi: 10.7498/aps.50.1197
Metrics
  • Abstract views:  216
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2025
  • Accepted Date:  10 April 2025
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map