-
As typical examples of strongly correlated electron systems, heavy fermion materials exhibit diverse quantum ground states such as antiferromagnetic order, ferromagnetic order, non-Fermi-liquid phases, unconventional superconductivity, quantum spin liquids, orbital order and topological order. In contrast to other strongly correlated electron systems, heavy fermion systems have relatively small characteristic energy scales, which allows different quantum states to be tuned continuously by using external parameters such as pressure, magnetic field and chemical doping. Heavy fermion materials thus serve as ideal systems for studying quantum phase transitions, superconductivity and their interplay. In this review, we briefly introduce the history of the field of heavy fermions and the current status both in China and in other countries. The properties of several representative heavy fermion systems are summarized, and some frontier scientific issues in this field are discussed, in particular, concerning heavy fermion superconductors, quantum phase transitions and exotic topological states in strongly correlated electron systems.
-
Keywords:
- heavy fermion /
- unconventional superconductivity /
- strongly correlated topological states /
- quantum phase transition /
- quantum tuning
[1] Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar
[2] Grewe N 1984 Solid State Commun. 50 19Google Scholar
[3] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar
[4] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, Monthoux P 2001 J. Phys. Condens. Matter 1 378
[5] Hegger H, Petrovic C, Moshopoulou E G, Sarrao J L, Fisk Z, Thompson J D 2000 Phys. Rev. Lett. 84 4986Google Scholar
[6] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z, Thompson J D 2001 Europhys. Lett. 53 354Google Scholar
[7] Steglich F, Gegenwart P, Geibel C, Helfrich R, Hellmann P, Lang M, Link A, Modler R, Sparn G, Büttgen N, Loidl A 1996 Physica B 223-224 1
[8] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104Google Scholar
[9] Ueda K, Kitaoka Y, Yamada H, Kohori Y, Kohara Y, Asayama K 1987 J. Phys. Soc. Jpn. 56 867Google Scholar
[10] Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q M, Yuan H Q 2018 Proc. Natl. Acad. Sci. 115 5343Google Scholar
[11] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar
[12] Ikeda H, Suzuki M, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar
[13] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar
[14] Trovarelli O, Weiden M, Müller-Reisener R, Gómez-Berisso M, Gegenwart P, Deppe M, Geibel C, Sereni J G, Steglich F 1997 Phys. Rev. B 56 678Google Scholar
[15] Bruls G, Wolf B, Finsterbusch D, Thalmeier P, Kouroudis I, Sun W, Assmus W, Lüthi B 1994 Phys. Rev. Lett. 72 1754Google Scholar
[16] Steglich F 2005 J. Phys. Soc. Jpn. 74 167Google Scholar
[17] Jaccard D, Behnia, Sierro J 1992 Phys. Lett. A 163 475Google Scholar
[18] Grosche F M, Julian S R, Mathur N D, Lonzarich G G 1996 Physica B 223-224 50Google Scholar
[19] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar
[20] Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L, Fisk Z 1996 Phys. Rev. B 53 8241Google Scholar
[21] Ren Z, Pourovskii L V, Giriat G, Lapertot G, Georges A, Jaccard D 2014 Phys. Rev. X 4 031055
[22] Gegenwart P, Kromer F, Lang M, Sparn G, Geibel C, Steglich F 1999 Phys. Rev. Lett. 82 1293Google Scholar
[23] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar
[24] Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar
[25] Knebel G, Braithwaite D, Canfield P C, Lapertot G, Flouquet J 2001 Phys. Rev. B 65 024425Google Scholar
[26] Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar
[27] Millis A J 1993 Phys. Rev. B 48 7183Google Scholar
[28] Sarrao J L, Thompson J D 2007 J. Phys. Soc. Jpn. 76 051013Google Scholar
[29] Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, Follath R 2008 Phys. Rev. B 77 155128Google Scholar
[30] Cornelius A L, Arko A J, Sarrao J L, Hundley M F, Fisk Z 2000 Phys. Rev. B 62 14181Google Scholar
[31] Hall D, Palm E C, Murphy T P, Tozer S W, Petrovic C, Eliza M R, Lydia P, Li C Q H, Alver U, Goodrich R G, Sarrao J L, Pagliuso P G, Wills J M, Fisk Z 2001 Phys. Rev. B 64 064506Google Scholar
[32] Akbari A, Thalmeier P 2012 Phys. Rev. B 86 134516Google Scholar
[33] An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M, Machida K 2010 Phys. Rev. Lett. 104 037002Google Scholar
[34] Bianchi A, Movshovich R, Vekhter I, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 257001Google Scholar
[35] Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z F, Pang G M, Shang T, Zhang J L, Lee H, Park T, Jaime M, Thompson J D, Steglich F, Si Q M, Yuan H Q 2015 Proc. Natl. Acad. Sci. 112 673Google Scholar
[36] Bianchi A, Movshovich R, Jaime M, Thompson J D, Pagliuso P G, Sarrao J L 2001 Phys. Rev. B 64 220504Google Scholar
[37] Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, Thompson J D 2003 Phys. Rev. B 67 020506Google Scholar
[38] Kratochvilova M, Dusek M, Uhlirova K, Rudajevova A, Prokleska J, Vondrackova B, Custers J, Sechovsky V 2014 J. Cryst. Growth 397 47Google Scholar
[39] Kratochvílová M, Prokleška J, Uhlířová K, Tkáč V, Dušek M, Sechovský V, Custers J 2015 Sci. Rep. 5 15904Google Scholar
[40] Rossi D, Marazza R, Ferro R 1979 J. Less-Common Met. 66 P17Google Scholar
[41] Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar
[42] Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar
[43] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C, Coleman P 2003 Nature 424 524Google Scholar
[44] Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. 107 14547Google Scholar
[45] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, von Löhneysen H, Bucher E, Ramazashvili R, Coleman P 2000 Nature 407 351Google Scholar
[46] Si Q, Steglich F 2010 Science 329 1161Google Scholar
[47] Schuberth E, Tippmann M, Steinke L, Lausberg S, Brando S, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar
[48] Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar
[49] Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar
[50] Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar
[51] Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar
[52] Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar
[53] Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar
[54] Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1411Google Scholar
[55] Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar
[56] Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica (Amsterdam)
326B 414 [57] Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar
[58] Huxley A, Rodière P, Paul D M, van Dijk N, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar
[59] Hayden S M, Taillefer L, Vettier C, Flouquet J 1992 Phys. Rev. B 46 8675
[60] Bernhoeft N, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y, Komatsubara T 1998 Phys. Rev. Lett. 81 4244Google Scholar
[61] Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D, louquet J 2000 Nature 406 587Google Scholar
[62] Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouguet J, Brison J P, Lhotel E, Paulsen C 2001 Nature 413 613Google Scholar
[63] Huy N T, Gasparini A, de Nijs D E, Huang Y, Klaasse J C P, Gortenmulder T, de Visser A, Hamann A, Görlach T, von Löhneysen H 2007 Phys. Rev. Lett. 99 067006Google Scholar
[64] White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar
[65] Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar
[66] Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar
[67] Bauer E D, Frederick N A, Ho P C, Zapf V S, Maple M B 2002 Phys. Rev. B 65 100506Google Scholar
[68] Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar
[69] Crro N J, Caldwell T, Bauer E D, Morales L A, Graf M J, Bang Y, Balatsky A V, Thompson J D, Sarrao J L 2005 Nature 434 622Google Scholar
[70] 杨义峰, 李宇 2015 64 217401Google Scholar
Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar
[71] Ormeno R J, Sibley A, Gough C E 2002 Phys. Rev. Lett. 88 047005Google Scholar
[72] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R, Onuki Y 2001 Phys. Rev. Lett. 87 057002Google Scholar
[73] Luke G M, Keren A, Le L P, Wu W D, Uemura Y J 1993 Phys. Rev. Lett. 71 1466Google Scholar
[74] Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Michida K 2013 J. Phys. Soc. Jpn. 82 113707Google Scholar
[75] Bauer E, Hilscher G, Michor H, Paul Ch, Scheidt E W, Gribanov A, Seropegin Yu, Noel H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003Google Scholar
[76] Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar
[77] Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar
[78] Bonalde I, Bramer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002Google Scholar
[79] Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn 75 013709Google Scholar
[80] Yogi M, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2004 Phys. Rev. Lett. 93 027003Google Scholar
[81] Mukuda H, Nishide S, Harada A, Iwasaki K, Yogi M, Yashima M, Kitaoka Y, Tsujino M, Takeuchi T, Settai R, Onuki Y, Bauer E, Itoh KM, Haller E E 2009 J. Phys. Soc. Jpn. 78 014705Google Scholar
[82] Kimura N, Ito K, Aoki H, Uji S, Terashima T 2007 Phys. Rev. Lett. 98 197001Google Scholar
[83] Settai R, Miyauchi Y, Takeuchi T, Levy F, Sheikin I, Onuki Y 2008 J. Phys. Soc. Jpn. 77 073705Google Scholar
[84] Dressel M 2007 Naturwissenschaften 94 527Google Scholar
[85] Steglich F 2014 Phil. Mag. 94 3259Google Scholar
[86] Pfleiderer C, Huxley A D 2002 Phys. Rev. Lett. 89 147005Google Scholar
[87] Slooten E, Naka T, Gasparini A, Huang Y K, de Visser A 2009 Phys. Rev. Lett. 103 097003Google Scholar
[88] Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar
[89] Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar
[90] Tomita T, Kuga K, Uwatoko Y, Coleman Piers, Nakatsuji S 2015 Science 349 506Google Scholar
[91] Settai R, Sugitani I, Okuda Y, Thamizhavel A, Nakashima M, Ōnuki Y, Harima H 2007 J. Magn. Magn. Mater. 310 844Google Scholar
[92] Mignot J M, Flouquet J, Haen P, Lapierre F, Puech L, Voiron J 1988 J. Magn. Magn. Mater. 76 97
[93] Knafo W, Aoki D, Vignolles D, Vignolle B, Klein Y, Jaudet C, Villaume A, Proust C, Flouquet J 2010 Phys. Rev. B 81 094403Google Scholar
[94] Sugiyama K, Nakashima M, Ohkuni H, Kindo K, Haga Y, Honma T, Yamamoto E, Ōnuki Y 1999 J. Phys. Soc. Jpn. 68 3394Google Scholar
[95] Löhneysen H, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015Google Scholar
[96] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidit W, Loewenhaupt M, Steglich F 2011 Phys. Rev. Lett. 106 246401Google Scholar
[97] Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar
[98] Coleman P, Pépin C, Si Q, Ramazashvili R 2001 J. Phys. Condens. Matter 13 R723Google Scholar
[99] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186Google Scholar
[100] Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J 2006 Phys. Rev. B 74 020501
[101] Senthil T, Sachdev S, Vojta M 2003 Phys. Rev. Lett. 90 216403Google Scholar
[102] Watanabe S, Miyake K 2010 Phys. Rev. Lett. 105 186403Google Scholar
[103] Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. 109 3238Google Scholar
[104] Yang Y 2016 Rep. Prog. Phys. 79 074501Google Scholar
[105] Jiao L, Smidman M, Kohama Y, Wang Z S, Graf D, Weng Z F, Zhang Y J, Matsuo A, Bauer E D, Lee Hanoh, Kirchner S, Singleton J, Kindo K, Wosnitza J, Steglich F, Thompson J D, Yuan H Q, 2019 Phys. Rev. B. 99 045127Google Scholar
[106] Shishido H, Settai R, Harima H, Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103Google Scholar
[107] Belitz D, Kirkpatrick T R, Vojta T 1999 Phys. Rev. Lett. 82 4707Google Scholar
[108] Uhlarz M, Pfleiderer C, Hayden S M 2004 Phys. Rev. Lett. 93 256404Google Scholar
[109] Barakat S, Braithwaite D, Alireza P, Grube K, Uhlarz M, Wilson J, Pfleiderer C, Flouquet J, Lonzarich G 2005 Physica B 359 1216
[110] Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330Google Scholar
[111] Friedemann S, Duncan W J, Hirschberger M, Bauer T W, Küchler R, Neubauer A, Brando M, Pfleiderer C, Grosche F M 2018 Nat. Phys. 14 62Google Scholar
[112] Wang R, Gebretsadik A, Ubaid-Kassis S, Schroeder A, Vojta T, Baker P J, Pratt F L, Blundell S J, Lancaster T, Franke I, Möller J S, Page K 2017 Phys. Rev. Lett. 118 267202Google Scholar
[113] Maple M B, Butch N P, Bauer E D, Zapf V S, Ho P C, Wilson S D, Dai P C, Adroja D T, Lee S H, Chung J H, Lynn J W 2006 Physica B 378 911
[114] Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C, Steglich F, Brando M 2013 Science 339 933Google Scholar
[115] Allen J W, Batlogg B, Wachter P L 1979 Phys. Rev. B 20 4807Google Scholar
[116] Wolgast S, Kurdak, C, Sun K, Allen J W, Kim D J, Fisk Z 2013 Phys. Rev. B 18 180405
[117] Neupane M, Alidoust Nasser, Xu S Y, Kondo T, Ishida Y, Kim D J, Liu C, Belopolski I, Jo Y J, Chang T R, Jeng H T, Durakiewicz T, Balicas L, Lin H, Bansil A, Shin S, Fisk Z, Hasan M Z 2013 Nat. Commun. 4 2991Google Scholar
[118] Syers P, Kim D, Fuhrer M S, Paglione J 2015 Phys. Rev. Lett. 114 096601Google Scholar
[119] Miyazaki H, Hajiri T, Ito T, Kunii S, and Kimura S 2012 Phys. Rev. B 86 075105Google Scholar
[120] Jiao L, Rößler S, Kim D J, Tjeng L H, Fisk Z, Steglich F, Wirth S 2016 Nat. Commun. 7 13762Google Scholar
[121] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, Xia J 2013 Sci. Rep. 3 3150Google Scholar
[122] Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar
[123] Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein1 M, Kiourlappou1 M, Srivastava1 A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, Sebastian Suchitra E 2015 Science 349 287Google Scholar
[124] Deng X, Haule K, Kotliar G 2013 Phys. Rev. Lett. 111 176404Google Scholar
[125] Xiang Z, Kasahara Y, Asaba T, Lawson1 B, Tinsman C, Chen Lu, Sugimoto U, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y, Li L 2018 Science 362 65Google Scholar
[126] Weng H, Zhao J, Wang Z, Fang Z, Dai X 2014 Phys. Rev. Lett. 112 016403Google Scholar
[127] Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408Google Scholar
[128] Dzero M, Xia J, Galitski V, Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249Google Scholar
[129] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar
[130] Xu Y, Yue X, Weng H, Dai X 2017 Phys. Rev. X 7 011027
[131] Lai H H, Grefe S E, Paschen S, Si Q 2018 Proc. Natl. Acad. Sci. 115 93Google Scholar
[132] Cao C, Zhi G X, Zhu J X 2019 arXiv 1904.00675
[133] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, Yuan H Q 2018 Nat. Commun. 9 4622Google Scholar
[134] Wu F, Guo C Y, Smidman M, Zhang J L, Yuan H Q 2017 Phys. Rev. B 96 125122Google Scholar
[135] Li P, Wu Z, Wu F, Cao C, Guo C, Wu Yi, Liu Yi, Sun Zhe, Cheng C M, Lin D S, Steglich, F, Yuan Q Y, Chiang T C, Liu Y 2018 Phys. Rev. B 98 085103Google Scholar
[136] Wu F, Guo C Y, Smidman M, Zhang J L, Chen Y, Singleton J, Yuan H Q 2019 npj Quantum Mater. 4 20Google Scholar
[137] Wu Z Z, Wu F, Li P, Guo C Y, Liu Y, Sun Z, Cheng C M, Chiang T C, Cao C, Yuan H Q, Liu Y 2019 Phys. Rev. B 99 035158Google Scholar
[138] Duan X, Wu F, Chen J, Zhang P, Liu Y, Yuan H Q, Cao C 2018 Commun. Phys. 1 71Google Scholar
[139] Guo C, Cao C, Smidman M, Wu F, Zhang Y J, Zhang F C, Yuan H Q 2017 npj Quantum Mater. 2 39Google Scholar
[140] Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar
[141] Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar
[142] Mydosh J A, Oppeneer P M 2011 Rev. Mod. Phys. 83 1301Google Scholar
[143] Aynajian P, Neto E H da Silva, Parker C V, Huang Y K, Pasupathy A, Mydosh J A, Yazdani A 2010 Proc. Natl. Acad. Sci. 107 10383Google Scholar
[144] Shishido, Hashimoto K, Shibauchi T, Sasaki T, Oizumi H, Kobayashi N, Takamasu T, Takehana K, Imanaka Y, Matsuda T D, Haga Y, Onuki Y, Matsuda Y 2009 Phys. Rev. Lett. 102 156403Google Scholar
[145] Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, Buyers W J L 2007 Nat. Phys. 3 96Google Scholar
[146] Matsuda Y, Okazaki R, Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y 2010 Physica C 470 1013Google Scholar
[147] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar
[148] Kung H H, Baumbach R E, Bauer E D, Thorsmølle V K, Zhang W L, Haule K, Mydosh Y A, Blumberg G 2015 Science 347 1339Google Scholar
[149] Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y 2011 Science 331 439Google Scholar
[150] Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O, von Löhneysen H 2017 Phys. Rev. Lett. 118 107204Google Scholar
[151] Gerber S, Bartkowiak M, Gavilano J, Ressouche E, Egetenmeyer N, Niedermayer C, Bianchi A D, Movshovich R, Bauer E D, Thompson J D, Kenzelmann M 2014 Nat. Phys. 10 126Google Scholar
[152] Si Q 2010 Phys. Status Solidi 247 476Google Scholar
[153] Kenzelmann M, Strssle T, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar
[154] Kumagai K, Shishido H, Shibauchi T, Matsuda Y 2011 Phys. Rev. Lett. 106 137004Google Scholar
[155] Radovan H A, Fortune N, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar
[156] Kenzelmann M, Gerber S, Egetenmeyer N, Gavilano J L, Strässle T, Bianchi A D, Ressouche E, Movshovich R, Baue R E D, Sarrao J L, Thompson J D 2010 Phys. Rev. Lett. 104 127001Google Scholar
[157] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480Google Scholar
[158] Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486Google Scholar
[159] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar
-
图 2 (a) CeCu2Si2结构示意图; (b), (c)超导电性在电阻和比热上的体现[3]; (d) 压力诱导的双超导相[8]
Fig. 2. (a) A schematic illustration of the crystal structure of CeCu2Si2; (b) and (c) evidences for superconductivity in CeCu2Si2 from resistivity and heat capacity, respectively[3]; (d) temperature-pressure phase diagram of CeCu2Si2 and CeCu2(Si1–xGex)2, suggesting two separate superconducting domes[8].
图 3 (a) CenMmIn3n+2m (M = Co, Rh, Ir; n, m为整数)体系的晶体结构 (以M = Rh为例); (b) CeIn3和CeRhIn5的压力-温度相图示意图[24]
Fig. 3. (a) Schematic illustrations of crystalline structures in CenMmIn3n+2m (M = Co, Rh, Ir; n, m are integers) (M = Rh for example); (b) a schematic pressure-temperature phase diagram of CeIn3 and CeRhIn5[24].
图 5 (a) UBe13结构示意图; (b) UPt3结构示意图; (c) Th掺杂的UBe13相图[53]; (d) UPt3的超导相图[58]
Fig. 5. (a), (b) Schematic illustrations of the crystalline structure of UBe13 and UPt3, respectively; (c) superconducting phase diagram of UBe13 as a function of Th-doping[53]; (d) magnetic field–temperature superconducting phase diagram of UPt3[58].
图 7 重费米子超导体超导相和量子相变 (a) CePd2Si2, 超导出现在反铁磁量子临界点附近[19]; (b) UCoGe, 超导出现在铁磁量子相变附近[87]; (c) PrTi2Al20, 超导与多极矩序[89]; (d) β-YbAlB4, 超导远离反铁磁量子临界点[90]
Fig. 7. Heavy fermion superconductors and quantum phase diagrams: (a) CePd2Si2, superconductivity (SC) near an antiferromagnetic quantum critical point(QCP)[19]; (b) UCoGe, SC near a ferromagnetic QCP[87]; (c) PrTi2Al20, SC coexists with multipolar order and gets enhanced near its QCP[89]; (d) β-YbAlB4, SC far away from an antiferromagnetic QCP[90].
图 8 巡游量子临界点(a)和局域量子临界点(b)的理论相图 图中的横坐标是非热力的调控参量δ, 纵坐标表示温度T, 调控参量δ可以调节RKKY作用和Kondo作用的相对强度; 图(a)显示量子临界点伴随近藤效应的塌陷, 导致费米面在此发生跳变; 而在图(b)中, 近藤效应发生在反铁磁态内部, 费米面在量子临界点连续变化; TN代表反铁磁转变温度, TFL表示费米液体的温度上限,
$ E_{\log }^* $ 标记小费米面到大费米面的转变, T0代表近藤晶格形成的过渡区间[99]Fig. 8. Schematic phase diagrams for itinerant quantum critical point (QCP) (a) and local QCP (b), respectively, proposed in one theoretical model. The x-axis denotes nonthermal tuning parameters δ, y-axis is the temperature T. TN is the antiferromagnetic ordering temperature,
$ E_{\log }^* $ denotes the volume change of Fermi surface and T0 is the temperature regime where kondo lattice forms[99].图 10 (a) 拓扑近藤绝缘体SmB6的电阻随温度变化测量结果[116], 在低温, 电阻的上升趋势逐渐饱和, 形成一个平台; (b) 能带计算表明, SmB6的能带结构中存在能带反转, 从而导致了表面狄拉克锥的出现[128]
Fig. 10. (a) Temperature dependence of resistivity for a possible topological Kondo insulator SmB6, where a clear plateau is observed at low temperature[116]; (b) band inversion and surface Dirac cone of SmB6, from band-structure calculation[128].
图 12 (a) URu2Si2材料在压力下的相图[146], 隐藏序相逐渐被抑制, 转变为反铁磁序, 同时超导相消失; (b) CePdAl材料的磁场-温度相图[150], 在某一磁场区间内, 比热测量结果表明其熵出现极大增加; (c) CeCoIn5中子散射结果表明其超导上临界磁场附近存在一个特殊的Q相[151]
Fig. 12. (a) Pressure-temperature phase diagram of URu2Si2[146]; (b) magnetic field- temperature phase diagram of CePdAl[150]; (c) Q-phase of CeCoIn5, by neutron scattering measurements[151].
表 1 重费米子超导材料(超导转变温度Tc, 比热系数γ, 上临界场Hc2(0))
Table 1. A summary of heavy fermion superconductors (Tc is superconducting transition temperature, γ is specific heat coefficient, Hc2(0) is the upper critical field).
类型 化合物 Tc/K γ/mJ·mol–1·K–2 Hc2 (0)/T CeT2X2 CeCu2Si2 0.64 1000 0.45//a CeCu2Ge2 0.64 (10 GPa) 2//a CePd2Si2 0.5 (2.7 GPa) 65 0.7//a 1.3//c CeAu2Si2 2.5 (22.5 GPa) CeNi2Ge2 0.3 350 CeRh2Si2 0.35 (0.9 GPa) 23 CeTX3 CeRhSi3 1.05 (2.6 GPa) 110 7 CeIrSi3 1.59 (2.6 GPa) 120 30 CeNiGe3 0.48 (6.8 GPa) 34 2 CeCoGe3 0.7 (5.5 GPa) 32 22 CeIrGe3 1.6 (24 GPa) 80 17 CemTnIn3m+2n CeIn3 0.25 (2.5 GPa) 370 0.45 CeCoIn5 2.3 300 11.6—11.9//a 4.95//c CeRhIn5 1.9 (1.77 GPa) 50 10.2//c CeIrIn5 0.4 700 0.53 CePt2In7 2.3 (3.1 GPa) 340 15 Ce2CoIn8 0.4 460 Ce2RhIn8 2.0 (2.3 GPa) 400 5.36 Ce2PdIn8 0.68 550 Ce3PdIn11 0.42 290 2.8 其他铈基 CePt3Si 0.75 390 5 CePd5Al2 0.57 (10.8 GPa) 56 0.25 镨基 PrOs4Sb12 1.85 500 2.3 PrTi2Al20 0.2 100 0.006 PrV2Al20 0.05 90 0.014 镱基 YbRh2Si2 0.002 β-YbAlB4 0.08 130 0.03 铀基 UIr 0.14 (2.6 GPa) 48.5 0.026 UGe2 0.7 (1.2 GPa) 100 1.4 UBe13 0.9 1000 9 UPt3 0.55, 0.48 422 2.8//a UCoGe 0.66 55 5//a URhGe 0.25 160 2//a UNi2Al3 1.0 120 1.6 UPd2Al3 2.0 150 0.8 URu2Si2 1.5 65.5 10 镎基 NpPd5Al2 5.0 200 3.7//a 钚基 PuCoGa5 18.0 77 74 PuCoIn5 2.5 200 32//a, 10//c PuRhGa5 9 80-150 25//ab PuRhIn5 1.7 350 23//ab -
[1] Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar
[2] Grewe N 1984 Solid State Commun. 50 19Google Scholar
[3] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar
[4] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, Monthoux P 2001 J. Phys. Condens. Matter 1 378
[5] Hegger H, Petrovic C, Moshopoulou E G, Sarrao J L, Fisk Z, Thompson J D 2000 Phys. Rev. Lett. 84 4986Google Scholar
[6] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z, Thompson J D 2001 Europhys. Lett. 53 354Google Scholar
[7] Steglich F, Gegenwart P, Geibel C, Helfrich R, Hellmann P, Lang M, Link A, Modler R, Sparn G, Büttgen N, Loidl A 1996 Physica B 223-224 1
[8] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104Google Scholar
[9] Ueda K, Kitaoka Y, Yamada H, Kohori Y, Kohara Y, Asayama K 1987 J. Phys. Soc. Jpn. 56 867Google Scholar
[10] Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q M, Yuan H Q 2018 Proc. Natl. Acad. Sci. 115 5343Google Scholar
[11] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar
[12] Ikeda H, Suzuki M, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar
[13] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar
[14] Trovarelli O, Weiden M, Müller-Reisener R, Gómez-Berisso M, Gegenwart P, Deppe M, Geibel C, Sereni J G, Steglich F 1997 Phys. Rev. B 56 678Google Scholar
[15] Bruls G, Wolf B, Finsterbusch D, Thalmeier P, Kouroudis I, Sun W, Assmus W, Lüthi B 1994 Phys. Rev. Lett. 72 1754Google Scholar
[16] Steglich F 2005 J. Phys. Soc. Jpn. 74 167Google Scholar
[17] Jaccard D, Behnia, Sierro J 1992 Phys. Lett. A 163 475Google Scholar
[18] Grosche F M, Julian S R, Mathur N D, Lonzarich G G 1996 Physica B 223-224 50Google Scholar
[19] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar
[20] Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L, Fisk Z 1996 Phys. Rev. B 53 8241Google Scholar
[21] Ren Z, Pourovskii L V, Giriat G, Lapertot G, Georges A, Jaccard D 2014 Phys. Rev. X 4 031055
[22] Gegenwart P, Kromer F, Lang M, Sparn G, Geibel C, Steglich F 1999 Phys. Rev. Lett. 82 1293Google Scholar
[23] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar
[24] Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar
[25] Knebel G, Braithwaite D, Canfield P C, Lapertot G, Flouquet J 2001 Phys. Rev. B 65 024425Google Scholar
[26] Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar
[27] Millis A J 1993 Phys. Rev. B 48 7183Google Scholar
[28] Sarrao J L, Thompson J D 2007 J. Phys. Soc. Jpn. 76 051013Google Scholar
[29] Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, Follath R 2008 Phys. Rev. B 77 155128Google Scholar
[30] Cornelius A L, Arko A J, Sarrao J L, Hundley M F, Fisk Z 2000 Phys. Rev. B 62 14181Google Scholar
[31] Hall D, Palm E C, Murphy T P, Tozer S W, Petrovic C, Eliza M R, Lydia P, Li C Q H, Alver U, Goodrich R G, Sarrao J L, Pagliuso P G, Wills J M, Fisk Z 2001 Phys. Rev. B 64 064506Google Scholar
[32] Akbari A, Thalmeier P 2012 Phys. Rev. B 86 134516Google Scholar
[33] An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M, Machida K 2010 Phys. Rev. Lett. 104 037002Google Scholar
[34] Bianchi A, Movshovich R, Vekhter I, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 257001Google Scholar
[35] Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z F, Pang G M, Shang T, Zhang J L, Lee H, Park T, Jaime M, Thompson J D, Steglich F, Si Q M, Yuan H Q 2015 Proc. Natl. Acad. Sci. 112 673Google Scholar
[36] Bianchi A, Movshovich R, Jaime M, Thompson J D, Pagliuso P G, Sarrao J L 2001 Phys. Rev. B 64 220504Google Scholar
[37] Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, Thompson J D 2003 Phys. Rev. B 67 020506Google Scholar
[38] Kratochvilova M, Dusek M, Uhlirova K, Rudajevova A, Prokleska J, Vondrackova B, Custers J, Sechovsky V 2014 J. Cryst. Growth 397 47Google Scholar
[39] Kratochvílová M, Prokleška J, Uhlířová K, Tkáč V, Dušek M, Sechovský V, Custers J 2015 Sci. Rep. 5 15904Google Scholar
[40] Rossi D, Marazza R, Ferro R 1979 J. Less-Common Met. 66 P17Google Scholar
[41] Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar
[42] Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar
[43] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C, Coleman P 2003 Nature 424 524Google Scholar
[44] Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. 107 14547Google Scholar
[45] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, von Löhneysen H, Bucher E, Ramazashvili R, Coleman P 2000 Nature 407 351Google Scholar
[46] Si Q, Steglich F 2010 Science 329 1161Google Scholar
[47] Schuberth E, Tippmann M, Steinke L, Lausberg S, Brando S, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar
[48] Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar
[49] Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar
[50] Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar
[51] Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar
[52] Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar
[53] Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar
[54] Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1411Google Scholar
[55] Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar
[56] Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica (Amsterdam)
326B 414 [57] Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar
[58] Huxley A, Rodière P, Paul D M, van Dijk N, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar
[59] Hayden S M, Taillefer L, Vettier C, Flouquet J 1992 Phys. Rev. B 46 8675
[60] Bernhoeft N, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y, Komatsubara T 1998 Phys. Rev. Lett. 81 4244Google Scholar
[61] Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D, louquet J 2000 Nature 406 587Google Scholar
[62] Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouguet J, Brison J P, Lhotel E, Paulsen C 2001 Nature 413 613Google Scholar
[63] Huy N T, Gasparini A, de Nijs D E, Huang Y, Klaasse J C P, Gortenmulder T, de Visser A, Hamann A, Görlach T, von Löhneysen H 2007 Phys. Rev. Lett. 99 067006Google Scholar
[64] White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar
[65] Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar
[66] Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar
[67] Bauer E D, Frederick N A, Ho P C, Zapf V S, Maple M B 2002 Phys. Rev. B 65 100506Google Scholar
[68] Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar
[69] Crro N J, Caldwell T, Bauer E D, Morales L A, Graf M J, Bang Y, Balatsky A V, Thompson J D, Sarrao J L 2005 Nature 434 622Google Scholar
[70] 杨义峰, 李宇 2015 64 217401Google Scholar
Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar
[71] Ormeno R J, Sibley A, Gough C E 2002 Phys. Rev. Lett. 88 047005Google Scholar
[72] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R, Onuki Y 2001 Phys. Rev. Lett. 87 057002Google Scholar
[73] Luke G M, Keren A, Le L P, Wu W D, Uemura Y J 1993 Phys. Rev. Lett. 71 1466Google Scholar
[74] Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Michida K 2013 J. Phys. Soc. Jpn. 82 113707Google Scholar
[75] Bauer E, Hilscher G, Michor H, Paul Ch, Scheidt E W, Gribanov A, Seropegin Yu, Noel H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003Google Scholar
[76] Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar
[77] Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar
[78] Bonalde I, Bramer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002Google Scholar
[79] Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn 75 013709Google Scholar
[80] Yogi M, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2004 Phys. Rev. Lett. 93 027003Google Scholar
[81] Mukuda H, Nishide S, Harada A, Iwasaki K, Yogi M, Yashima M, Kitaoka Y, Tsujino M, Takeuchi T, Settai R, Onuki Y, Bauer E, Itoh KM, Haller E E 2009 J. Phys. Soc. Jpn. 78 014705Google Scholar
[82] Kimura N, Ito K, Aoki H, Uji S, Terashima T 2007 Phys. Rev. Lett. 98 197001Google Scholar
[83] Settai R, Miyauchi Y, Takeuchi T, Levy F, Sheikin I, Onuki Y 2008 J. Phys. Soc. Jpn. 77 073705Google Scholar
[84] Dressel M 2007 Naturwissenschaften 94 527Google Scholar
[85] Steglich F 2014 Phil. Mag. 94 3259Google Scholar
[86] Pfleiderer C, Huxley A D 2002 Phys. Rev. Lett. 89 147005Google Scholar
[87] Slooten E, Naka T, Gasparini A, Huang Y K, de Visser A 2009 Phys. Rev. Lett. 103 097003Google Scholar
[88] Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar
[89] Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar
[90] Tomita T, Kuga K, Uwatoko Y, Coleman Piers, Nakatsuji S 2015 Science 349 506Google Scholar
[91] Settai R, Sugitani I, Okuda Y, Thamizhavel A, Nakashima M, Ōnuki Y, Harima H 2007 J. Magn. Magn. Mater. 310 844Google Scholar
[92] Mignot J M, Flouquet J, Haen P, Lapierre F, Puech L, Voiron J 1988 J. Magn. Magn. Mater. 76 97
[93] Knafo W, Aoki D, Vignolles D, Vignolle B, Klein Y, Jaudet C, Villaume A, Proust C, Flouquet J 2010 Phys. Rev. B 81 094403Google Scholar
[94] Sugiyama K, Nakashima M, Ohkuni H, Kindo K, Haga Y, Honma T, Yamamoto E, Ōnuki Y 1999 J. Phys. Soc. Jpn. 68 3394Google Scholar
[95] Löhneysen H, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015Google Scholar
[96] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidit W, Loewenhaupt M, Steglich F 2011 Phys. Rev. Lett. 106 246401Google Scholar
[97] Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar
[98] Coleman P, Pépin C, Si Q, Ramazashvili R 2001 J. Phys. Condens. Matter 13 R723Google Scholar
[99] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186Google Scholar
[100] Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J 2006 Phys. Rev. B 74 020501
[101] Senthil T, Sachdev S, Vojta M 2003 Phys. Rev. Lett. 90 216403Google Scholar
[102] Watanabe S, Miyake K 2010 Phys. Rev. Lett. 105 186403Google Scholar
[103] Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. 109 3238Google Scholar
[104] Yang Y 2016 Rep. Prog. Phys. 79 074501Google Scholar
[105] Jiao L, Smidman M, Kohama Y, Wang Z S, Graf D, Weng Z F, Zhang Y J, Matsuo A, Bauer E D, Lee Hanoh, Kirchner S, Singleton J, Kindo K, Wosnitza J, Steglich F, Thompson J D, Yuan H Q, 2019 Phys. Rev. B. 99 045127Google Scholar
[106] Shishido H, Settai R, Harima H, Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103Google Scholar
[107] Belitz D, Kirkpatrick T R, Vojta T 1999 Phys. Rev. Lett. 82 4707Google Scholar
[108] Uhlarz M, Pfleiderer C, Hayden S M 2004 Phys. Rev. Lett. 93 256404Google Scholar
[109] Barakat S, Braithwaite D, Alireza P, Grube K, Uhlarz M, Wilson J, Pfleiderer C, Flouquet J, Lonzarich G 2005 Physica B 359 1216
[110] Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330Google Scholar
[111] Friedemann S, Duncan W J, Hirschberger M, Bauer T W, Küchler R, Neubauer A, Brando M, Pfleiderer C, Grosche F M 2018 Nat. Phys. 14 62Google Scholar
[112] Wang R, Gebretsadik A, Ubaid-Kassis S, Schroeder A, Vojta T, Baker P J, Pratt F L, Blundell S J, Lancaster T, Franke I, Möller J S, Page K 2017 Phys. Rev. Lett. 118 267202Google Scholar
[113] Maple M B, Butch N P, Bauer E D, Zapf V S, Ho P C, Wilson S D, Dai P C, Adroja D T, Lee S H, Chung J H, Lynn J W 2006 Physica B 378 911
[114] Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C, Steglich F, Brando M 2013 Science 339 933Google Scholar
[115] Allen J W, Batlogg B, Wachter P L 1979 Phys. Rev. B 20 4807Google Scholar
[116] Wolgast S, Kurdak, C, Sun K, Allen J W, Kim D J, Fisk Z 2013 Phys. Rev. B 18 180405
[117] Neupane M, Alidoust Nasser, Xu S Y, Kondo T, Ishida Y, Kim D J, Liu C, Belopolski I, Jo Y J, Chang T R, Jeng H T, Durakiewicz T, Balicas L, Lin H, Bansil A, Shin S, Fisk Z, Hasan M Z 2013 Nat. Commun. 4 2991Google Scholar
[118] Syers P, Kim D, Fuhrer M S, Paglione J 2015 Phys. Rev. Lett. 114 096601Google Scholar
[119] Miyazaki H, Hajiri T, Ito T, Kunii S, and Kimura S 2012 Phys. Rev. B 86 075105Google Scholar
[120] Jiao L, Rößler S, Kim D J, Tjeng L H, Fisk Z, Steglich F, Wirth S 2016 Nat. Commun. 7 13762Google Scholar
[121] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, Xia J 2013 Sci. Rep. 3 3150Google Scholar
[122] Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar
[123] Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein1 M, Kiourlappou1 M, Srivastava1 A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, Sebastian Suchitra E 2015 Science 349 287Google Scholar
[124] Deng X, Haule K, Kotliar G 2013 Phys. Rev. Lett. 111 176404Google Scholar
[125] Xiang Z, Kasahara Y, Asaba T, Lawson1 B, Tinsman C, Chen Lu, Sugimoto U, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y, Li L 2018 Science 362 65Google Scholar
[126] Weng H, Zhao J, Wang Z, Fang Z, Dai X 2014 Phys. Rev. Lett. 112 016403Google Scholar
[127] Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408Google Scholar
[128] Dzero M, Xia J, Galitski V, Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249Google Scholar
[129] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar
[130] Xu Y, Yue X, Weng H, Dai X 2017 Phys. Rev. X 7 011027
[131] Lai H H, Grefe S E, Paschen S, Si Q 2018 Proc. Natl. Acad. Sci. 115 93Google Scholar
[132] Cao C, Zhi G X, Zhu J X 2019 arXiv 1904.00675
[133] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, Yuan H Q 2018 Nat. Commun. 9 4622Google Scholar
[134] Wu F, Guo C Y, Smidman M, Zhang J L, Yuan H Q 2017 Phys. Rev. B 96 125122Google Scholar
[135] Li P, Wu Z, Wu F, Cao C, Guo C, Wu Yi, Liu Yi, Sun Zhe, Cheng C M, Lin D S, Steglich, F, Yuan Q Y, Chiang T C, Liu Y 2018 Phys. Rev. B 98 085103Google Scholar
[136] Wu F, Guo C Y, Smidman M, Zhang J L, Chen Y, Singleton J, Yuan H Q 2019 npj Quantum Mater. 4 20Google Scholar
[137] Wu Z Z, Wu F, Li P, Guo C Y, Liu Y, Sun Z, Cheng C M, Chiang T C, Cao C, Yuan H Q, Liu Y 2019 Phys. Rev. B 99 035158Google Scholar
[138] Duan X, Wu F, Chen J, Zhang P, Liu Y, Yuan H Q, Cao C 2018 Commun. Phys. 1 71Google Scholar
[139] Guo C, Cao C, Smidman M, Wu F, Zhang Y J, Zhang F C, Yuan H Q 2017 npj Quantum Mater. 2 39Google Scholar
[140] Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar
[141] Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar
[142] Mydosh J A, Oppeneer P M 2011 Rev. Mod. Phys. 83 1301Google Scholar
[143] Aynajian P, Neto E H da Silva, Parker C V, Huang Y K, Pasupathy A, Mydosh J A, Yazdani A 2010 Proc. Natl. Acad. Sci. 107 10383Google Scholar
[144] Shishido, Hashimoto K, Shibauchi T, Sasaki T, Oizumi H, Kobayashi N, Takamasu T, Takehana K, Imanaka Y, Matsuda T D, Haga Y, Onuki Y, Matsuda Y 2009 Phys. Rev. Lett. 102 156403Google Scholar
[145] Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, Buyers W J L 2007 Nat. Phys. 3 96Google Scholar
[146] Matsuda Y, Okazaki R, Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y 2010 Physica C 470 1013Google Scholar
[147] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar
[148] Kung H H, Baumbach R E, Bauer E D, Thorsmølle V K, Zhang W L, Haule K, Mydosh Y A, Blumberg G 2015 Science 347 1339Google Scholar
[149] Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y 2011 Science 331 439Google Scholar
[150] Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O, von Löhneysen H 2017 Phys. Rev. Lett. 118 107204Google Scholar
[151] Gerber S, Bartkowiak M, Gavilano J, Ressouche E, Egetenmeyer N, Niedermayer C, Bianchi A D, Movshovich R, Bauer E D, Thompson J D, Kenzelmann M 2014 Nat. Phys. 10 126Google Scholar
[152] Si Q 2010 Phys. Status Solidi 247 476Google Scholar
[153] Kenzelmann M, Strssle T, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar
[154] Kumagai K, Shishido H, Shibauchi T, Matsuda Y 2011 Phys. Rev. Lett. 106 137004Google Scholar
[155] Radovan H A, Fortune N, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar
[156] Kenzelmann M, Gerber S, Egetenmeyer N, Gavilano J L, Strässle T, Bianchi A D, Ressouche E, Movshovich R, Baue R E D, Sarrao J L, Thompson J D 2010 Phys. Rev. Lett. 104 127001Google Scholar
[157] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480Google Scholar
[158] Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486Google Scholar
[159] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar
计量
- 文章访问数: 20228
- PDF下载量: 942
- 被引次数: 0