Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inversion method for bubble size distribution with sound attenuation

Hou Sen Hu Chang-Qing Zhao Mei

Citation:

Inversion method for bubble size distribution with sound attenuation

Hou Sen, Hu Chang-Qing, Zhao Mei
PDF
HTML
Get Citation
  • Measurement of the bubble size distribution (BSD) and the void fraction in bubbly liquids is very important for many areas, such as ocean science, cavitation inception studies, and military applications. The methods of using acoustical attenuation caused by bubbly liquid to estimate the BSD can date back to Medwin’s research in which the resonant bubble approximation (RBA) was proposed [Medwin H 1970 J.Geophys.Res. 75 599]. In the traditional theory, the methods used to invert the acoustical attenuation for obtaining the BSD are well developed and useful for the low void fraction. However, the comparison between the results from the conventional methods and the experimental results is not satisfactory when the void fraction is higher than 10–5. In fact, the frequency dispersion and the bubble interaction in bubbly liquid should be considered in the process of inverting the BSD for the high-density bubble group. In this paper, the relationship between the attenuation and the phase velocity of bubbly liquid is analyzed based on the effective medium theory, and the bubbles’ interaction is considered by calculating the change of vibration parameters of bubbles. On this basis, we propose an iterative method to accurately determine the BSD of the high-density bubble group. In this iterative method, the errors of the inversion results are reduced by estimating the phase velocity and the vibration parameters of bubbles from sound attenuation. This iterative method is numerically tested for the bubble distributions of log-normal and power-law functions. The simulation results are in good agreement with the given bubble distributions for the void fractions higher than 10–3. Further, the influence of the frequency dispersion and the bubble interaction on inversion results are discussed. Compared with the experimental data, the inversion results calculated by the iterative method show that considering the dispersion can significantly reduce the errors, when the void fraction of bubbly liquid increases up to 10–5. And the correction to bubble damping coefficient and resonance frequency have an important effect on the inversion result when the void fraction of bubbly liquid is higher than 10–3, indicating that the iterative method proposed by this paper can be a useful tool for inverting the BSD of the high-density bubble group in the liquid.
      Corresponding author: Zhao Mei, zhaomei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674353)
    [1]

    蒋涛, 刘凯, 张江 2010 兵工学报 31 860

    Jiang T, Liu K, Zhang J 2010 Acta Armam. 31 860

    [2]

    王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源 2020 化工学报 71 1898

    Wang S X, Li Y X, Liu C W, Liang J, Li A Q, Xue Y 2020 J. Chem. Ind. Eng. (China) 71 1898

    [3]

    王勇, 林书玉, 张小丽 2013 62 064304Google Scholar

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304Google Scholar

    [4]

    Medwin H 1970 J. Geophys. Res. 75 599Google Scholar

    [5]

    Medwin H 1974 J. Acoust. Soc. Am. 56 1100Google Scholar

    [6]

    Medwin H 1977 J. Geophys. Res. 82 971Google Scholar

    [7]

    Qian Z W 1993 J. Sound Vib. 168 327Google Scholar

    [8]

    Commander K W, Moritz E 1989 J. Acoust. Soc. Am. 85 2665Google Scholar

    [9]

    Commander K W, Moritz E 1989 Oceans' 89 Conference Proceedings Florida, America, September 18−21, 1989 pp1181−1185

    [10]

    Caruthers J W, Elmore P A 1999 J. Acoust. Soc. Am. 106 117

    [11]

    Choi B K, Yoon S W 2001 IEEE J. Oceanic Eng. 26 125Google Scholar

    [12]

    Choi B K, Kim B C, Kim B N 2006 Ocean Sci. J. 41 195Google Scholar

    [13]

    Czerski, H. 2012 J. Atmos. Oceanic Technol. 29 1139Google Scholar

    [14]

    Mantouka A, Dogan H, White P R 2016 J. Acoust. Soc. Am. 140 274Google Scholar

    [15]

    谢萍 硕士学位论文 (青岛: 中国海洋大学)

    Xie P 2011 M. S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [16]

    王众, 张静远, 张洪刚 2019 海军工程大学学报 31 74Google Scholar

    Wang Z, Zhang J Y, Zhang H G 2019 J. Nav. Univ. Eng. 31 74Google Scholar

    [17]

    Duraiswami R, Prabhukumar S, Chahine G L 1998 J. Acoust. Soc. Am. 27 2569

    [18]

    Wu X J, Chahine G L 2010 J. Hydrodyn. Ser. B 22 330

    [19]

    Chahine G L 2009 J. Hydrodyn. 21 316Google Scholar

    [20]

    Leighton T G, Baik K, Jiang J 2012 Proc. Roy. Soc. A-Math. Phys. 468 2461

    [21]

    Silberman E. 1957 J. Acoust. Soc. Am. 29 925Google Scholar

    [22]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931Google Scholar

    [23]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 168Google Scholar

    [24]

    Fuster D, Conoir J M, Colonius T 2014 Phys. Rev. E 90 063010Google Scholar

    [25]

    Foldy L L 1945 Phys. Rev. 67 107Google Scholar

    [26]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar

    [27]

    Lukas M A 1993 Numer. Math. 66 41Google Scholar

    [28]

    Wilson P S, Roy R A, Carey W M 2005 J. Acoust. Soc. Am. 117 1895Google Scholar

  • 图 1  迭代方法反演气泡分布流程图

    Figure 1.  Flow diagram of the iterative inverse method.

    图 2  迭代算法反演结果 (a) 对数正态分布, $r \in \left[ {3 \times {{10}^{ - 4}}\;{\rm{ m}}, 8 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (b) 幂律分布, $r \in \left[ {3 \times {{10}^{ - 4}}\;{\rm{ m}}, 8 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (c) 对数正态分布, $r \in \left[ {0.5 \times {{10}^{ - 4}}\;{\rm{ m}}, 1.5 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (d) 幂律分布, $r \in \left[ {0.5 \times {{10}^{ - 4}}\;{\rm{ m}}, 1.5 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$

    Figure 2.  The inversion results: (a) Log-normal, $r \in \left[ {3 \times {{10}^{ - 4}}\;{\rm{ m}}, 8 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (b) Power-law, $r \in \left[ {3 \times {{10}^{ - 4}}\;{\rm{ m}}, 8 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (c) Log-normal, $r \in \left[ {0.5 \times {{10}^{ - 4}}\;{\rm{ m}}, 1.5 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$; (d) Power-law, $r \in \left[ {0.5 \times {{10}^{ - 4}}\;{\rm{ m}}, 1.5 \times {{10}^{ - 4}}\;{\rm{ m}}} \right]$.

    图 3  例1数据的反演结果图, 气泡群孔隙率$\beta = 6.2 \times {10^{ - 5}}$, 平均半径$\overline r = 6.36 \times {10^{ - 4}}\;{\rm{ m}}$ (a) 气泡分布反演结果; (b) 相速度计算结果; (c) 声衰减计算结果

    Figure 3.  Inversion results of Example 1, void fraction$\beta = 6.2 \times {10^{ - 5}}$, mean radius $\overline r = 6.36 \times {10^{ - 4}}\;{\rm{ m}}$: (a) Bubble distributions; (b) phase speed; (c) sound attenuation.

    图 4  例2数据的反演结果图, 气泡群孔隙率$\beta = 1.5 \times {10^{ - 3}}$, 平均半径$\overline r = 8.2 \times {10^{ - 5}}\;{\rm{ m}}$ (a) 气泡分布反演结果; (b) 相速度计算结果; (c) 声衰减计算结果

    Figure 4.  Inversion results of example 2, void fraction$\beta = 1.5 \times {10^{ - 3}}$, mean radius $\overline r = 8.2 \times {10^{ - 5}}\;{\rm{ m}}$: (a) Bubble distributions; (b) phase speed; (c) sound attenuation.

    图 5  例3数据的反演结果图, 气泡群孔隙率$\beta {\rm{ = 9}}{\rm{.4}} \times {10^{{\rm{ - 3}}}}$, 平均半径$\overline r = 8.6 \times {10^{ - 5}}\;{\rm{ m}}$ (a) 气泡分布反演结果; (b) 相速度计算结果; (c) 声衰减计算结果

    Figure 5.  Inversion results of example 3, void fraction$\beta = 9{\rm{.4}} \times {10^{{\rm{ - 3}}}}$, mean radius $\overline r = 8.6 \times {10^{ - 5}}\;{\rm{ m}}$: (a) Bubble distributions; (b) phase speed; (c) sound attenuation.

    图 6  不同半径气泡群衰减峰位置

    Figure 6.  Attenuation peak positions of bubble groups with different radius.

    图 7  例4数据的反演结果图, 气泡群孔隙率$\beta = 5.3 \times {10^{ - 3}}$, 平均半径$\overline r = 2.2\;{\rm{ mm}}$ (a) 气泡分布反演结果; (b)相速度计算结果; (c)声衰减计算结果

    Figure 7.  Inversion results of example 4, void fraction$\beta = 5.3 \times {10^{ - 3}}$, mean radius $\overline r = 2.2\;{\rm{ mm}}$: (a) Bubble distributions; (b) phase speed; (c) sound attenuation.

    表 1  各实验算例中的气泡分布

    Table 1.  Bubble distribution of 4 experimental examples

    实验算例 例1(图3) 例2(图4) 例3(图5) 例4(图7)
    分布 正态分布 对数正态 对数正态
    平均半径(m) 6.36 × 10–4 8.2 × 10–5 8.4 × 10–5 2.2 × 10–3
    标准差(m) 5 × 10–6
    对数标准差 0.04 0.06
    孔隙率 6.2 × 10–5 1.5 × 10–3 9.4 × 10–3 5.3 × 10–3
    DownLoad: CSV
    Baidu
  • [1]

    蒋涛, 刘凯, 张江 2010 兵工学报 31 860

    Jiang T, Liu K, Zhang J 2010 Acta Armam. 31 860

    [2]

    王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源 2020 化工学报 71 1898

    Wang S X, Li Y X, Liu C W, Liang J, Li A Q, Xue Y 2020 J. Chem. Ind. Eng. (China) 71 1898

    [3]

    王勇, 林书玉, 张小丽 2013 62 064304Google Scholar

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304Google Scholar

    [4]

    Medwin H 1970 J. Geophys. Res. 75 599Google Scholar

    [5]

    Medwin H 1974 J. Acoust. Soc. Am. 56 1100Google Scholar

    [6]

    Medwin H 1977 J. Geophys. Res. 82 971Google Scholar

    [7]

    Qian Z W 1993 J. Sound Vib. 168 327Google Scholar

    [8]

    Commander K W, Moritz E 1989 J. Acoust. Soc. Am. 85 2665Google Scholar

    [9]

    Commander K W, Moritz E 1989 Oceans' 89 Conference Proceedings Florida, America, September 18−21, 1989 pp1181−1185

    [10]

    Caruthers J W, Elmore P A 1999 J. Acoust. Soc. Am. 106 117

    [11]

    Choi B K, Yoon S W 2001 IEEE J. Oceanic Eng. 26 125Google Scholar

    [12]

    Choi B K, Kim B C, Kim B N 2006 Ocean Sci. J. 41 195Google Scholar

    [13]

    Czerski, H. 2012 J. Atmos. Oceanic Technol. 29 1139Google Scholar

    [14]

    Mantouka A, Dogan H, White P R 2016 J. Acoust. Soc. Am. 140 274Google Scholar

    [15]

    谢萍 硕士学位论文 (青岛: 中国海洋大学)

    Xie P 2011 M. S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [16]

    王众, 张静远, 张洪刚 2019 海军工程大学学报 31 74Google Scholar

    Wang Z, Zhang J Y, Zhang H G 2019 J. Nav. Univ. Eng. 31 74Google Scholar

    [17]

    Duraiswami R, Prabhukumar S, Chahine G L 1998 J. Acoust. Soc. Am. 27 2569

    [18]

    Wu X J, Chahine G L 2010 J. Hydrodyn. Ser. B 22 330

    [19]

    Chahine G L 2009 J. Hydrodyn. 21 316Google Scholar

    [20]

    Leighton T G, Baik K, Jiang J 2012 Proc. Roy. Soc. A-Math. Phys. 468 2461

    [21]

    Silberman E. 1957 J. Acoust. Soc. Am. 29 925Google Scholar

    [22]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931Google Scholar

    [23]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 168Google Scholar

    [24]

    Fuster D, Conoir J M, Colonius T 2014 Phys. Rev. E 90 063010Google Scholar

    [25]

    Foldy L L 1945 Phys. Rev. 67 107Google Scholar

    [26]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar

    [27]

    Lukas M A 1993 Numer. Math. 66 41Google Scholar

    [28]

    Wilson P S, Roy R A, Carey W M 2005 J. Acoust. Soc. Am. 117 1895Google Scholar

  • [1] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [2] Zhao Ning-Ning, Xiao Xin-Yu, Fan Feng-Xian, Su Ming-Xu. Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [3] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [4] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [5] Fan Yu-Zhe, Chen Bao-Wei, Li Hai-Sen, Xu Chao. Linear-wave propagation in liquids containing bubbly clusters. Acta Physica Sinica, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [6] Luo Zhong-Bing,  Dong Hui-Jun,  Ma Zhi-Yuan,  Zou Long-Jiang,  Zhu Xiao-Lei,  Lin Li. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel. Acta Physica Sinica, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [7] Fan Yu-Zhe, Li Hai-Sen, Xu Chao, Chen Bao-Wei, Du Wei-Dong. Spatial correlation of underwater bubble clouds based on acoustic scattering. Acta Physica Sinica, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [8] Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang. Numerical study on acoustic behavior of two-dimensional granular system. Acta Physica Sinica, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [9] Zheng Guang-Ying, Huang Yi-Wang. Effect of linear bubble vibration on wave propagation in unsaturated porous medium containing air bubbles. Acta Physica Sinica, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [10] Miao Bo-Ya, An Yu. Cavitation of two kinds of bubble mixtures. Acta Physica Sinica, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [11] Wang Cheng-Hui, Mo Run-Yang, Hu Jing, Chen Shi. Coupled oscillation of bubbles in a spherical bubble cluster. Acta Physica Sinica, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [12] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [13] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [15] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamical behaviors of a bubble cluster under ultrasound field. Acta Physica Sinica, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [16] Zhang A-Man, Yao Xiong_Liang, Li Jia. The dynamics of bubbles. Acta Physica Sinica, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [17] He Qun, Xu Wei, Li Shuang, Xiao Yu-Zhu. The digraph cell mapping method based on composite cell space. Acta Physica Sinica, 2008, 57(7): 4021-4028. doi: 10.7498/aps.57.4021
    [18] He Shou-Jie, Chen Qi-Dai, Li Xue-Chen, Ai Xi-Cheng, Zhang Jian-Ping, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] Liu Hai-Jun, An Yu. Pressure distribution outside a single cavitation bubble. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
    [20] QIAN ZU-WEN. SOUND INTERACTION AMONG BUBBLES IN WATER. Acta Physica Sinica, 1981, 30(4): 442-447. doi: 10.7498/aps.30.442
Metrics
  • Abstract views:  5355
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2020
  • Accepted Date:  05 October 2020
  • Available Online:  04 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map