Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial correlation of underwater bubble clouds based on acoustic scattering

Fan Yu-Zhe Li Hai-Sen Xu Chao Chen Bao-Wei Du Wei-Dong

Citation:

Spatial correlation of underwater bubble clouds based on acoustic scattering

Fan Yu-Zhe, Li Hai-Sen, Xu Chao, Chen Bao-Wei, Du Wei-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With using the effective medium theory to describe acoustic scattering from bubble clouds, one of the underlying assumptions shows that the probability of an individual bubble located at some position in space is independent of the locations of other bubbles. However, bubbles within the clouds that naturally occur are usually influenced by the motion of the fluid, which makes them preferentially concentrated or clustered. According to Weber's method, it is a useful way of introducing the spatial correlation function to describe this phenomenon in bubble cloud. The spatial correlation function is involved in acoustic scattering and it is important to notice that the spatial correlation should be dependent on the position and radius of each bubble due to the “hole correction” or the effect of the dynamics of the fluid. Because of these reasons, it is hard to invert the spatial distribution of bubble clouds by using the spatial correlation function in acoustic scattering. A method is described here in which bubble clouds are separated into many small subareas and the conception, called effective spatial correlation function which is the statistic of spatial correlation function, is used to describe the correlation between subareas of bubble clouds. Since the effective spatial correlation function is independent of bubble radius and positions, the bubble clouddistribution and the trend of clustering can be inverted by using this function. The simulation indicates that the effective spatial correlation function can precisely trace the position of the clustering center, even the clustering center covered by other bubble clouds can be detected. With using the multi-bean sonar for measuring the bubbly ship wake generated by a small trial vessel, the method is used to invert the spatial distribution and clustering centers of bubble field in the ship wake. The results show that the effective spatial correlation function accurately inverts the distribution and clustering centers of bubbles in ship wake. Furthermore, the method presented in this paper could distinguish between the bubble clouds caused by different reasons and detect upper ocean bubble clouds covered by other bubbles generated by wave breaking as well.
      Corresponding author: Chen Bao-Wei, cbwwin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 41306038, 41576102, 41606115) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No. HEUCF160510).
    [1]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 1

    [2]

    Foldy L L 1945 Phys. Rev. 67 107

    [3]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 3

    [4]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 4

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Wang Y 2014 Ph. D. Dissertation(Xi'an:Shanxi Normal University)(in Chinese)[王勇2014博士学位论文(西安:陕西师范大学)]

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽2013 62 064304]

    [8]

    Eaton J, Fessler J 1994 Int. J. Multiphase Flow 20 94

    [9]

    Weber T C, Lyons A P, Bradley D L 2007 IEEE J. Ocean Eng. 32 2

    [10]

    Shaw R A, Kostinski A B, Larsen M L 2002 Qu. J. R. Meteorol Soc. 128 582

    [11]

    Weber T C 2008 J. Acoust. Soc. Am. 124 5

    [12]

    Landau L D, Lifshitz E M(translated by Shu R G, Shu C) 2011 Statistical Physics (Beijing:Higher Education Press) p309(in Chinese)[朗道L D, 栗弗席兹(E M)著(束仁贵, 束莼译) 2014统计物理学I(北京:高等教育出版社)第309页]

    [13]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese)[马艳, 林书玉, 鲜小军2016 65 014301]

    [14]

    Caleap M, Drinkwater B W, Wilcox P D 2012 J. Acoust. Soc. Am. 131 3

    [15]

    Gustavssion K, Mehlig B 2016 Adv. Phys. 65 1

    [16]

    Sun C S 2008 Ph. D. Dissertation(Changsha:National University of Defense Technology University)(in Chinese)[孙春生2008博士学位论文(长沙:国防科学技术大学)]

    [17]

    Peltzer R D, Garrett W D, Smith P M 1987 Int. J. Remote Sens. 85

    [18]

    Trevorrow M V, Vagle S, Farmer D M 1994 J. Acoust. Soc. Am. 95 4

    [19]

    Weber T C, Lyons A P, Bradley D L 2005 J. Geophys. Res. 110C 4

    [20]

    Li S 2014 Ph. D. Dissertation(Harbin:Harbin Engineering University)(in Chinese)[李珊2014博士学位论文(哈尔滨:哈尔滨工程大学)]

    [21]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 pp1-5

    [22]

    Vagle S, Burch H 2005 J. Acoust. Soc. Am. 117 1

    [23]

    Leightion T G, Ginfer D C, Chua G H, White P R, Dix J K 2011 J. Acoust. Soc. Am. 130 5

    [24]

    Chen W Z, 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214(in Chinese)[陈伟中2014声空化物理(北京:科学出版社)第341页]

  • [1]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 1

    [2]

    Foldy L L 1945 Phys. Rev. 67 107

    [3]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 3

    [4]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 4

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Wang Y 2014 Ph. D. Dissertation(Xi'an:Shanxi Normal University)(in Chinese)[王勇2014博士学位论文(西安:陕西师范大学)]

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽2013 62 064304]

    [8]

    Eaton J, Fessler J 1994 Int. J. Multiphase Flow 20 94

    [9]

    Weber T C, Lyons A P, Bradley D L 2007 IEEE J. Ocean Eng. 32 2

    [10]

    Shaw R A, Kostinski A B, Larsen M L 2002 Qu. J. R. Meteorol Soc. 128 582

    [11]

    Weber T C 2008 J. Acoust. Soc. Am. 124 5

    [12]

    Landau L D, Lifshitz E M(translated by Shu R G, Shu C) 2011 Statistical Physics (Beijing:Higher Education Press) p309(in Chinese)[朗道L D, 栗弗席兹(E M)著(束仁贵, 束莼译) 2014统计物理学I(北京:高等教育出版社)第309页]

    [13]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese)[马艳, 林书玉, 鲜小军2016 65 014301]

    [14]

    Caleap M, Drinkwater B W, Wilcox P D 2012 J. Acoust. Soc. Am. 131 3

    [15]

    Gustavssion K, Mehlig B 2016 Adv. Phys. 65 1

    [16]

    Sun C S 2008 Ph. D. Dissertation(Changsha:National University of Defense Technology University)(in Chinese)[孙春生2008博士学位论文(长沙:国防科学技术大学)]

    [17]

    Peltzer R D, Garrett W D, Smith P M 1987 Int. J. Remote Sens. 85

    [18]

    Trevorrow M V, Vagle S, Farmer D M 1994 J. Acoust. Soc. Am. 95 4

    [19]

    Weber T C, Lyons A P, Bradley D L 2005 J. Geophys. Res. 110C 4

    [20]

    Li S 2014 Ph. D. Dissertation(Harbin:Harbin Engineering University)(in Chinese)[李珊2014博士学位论文(哈尔滨:哈尔滨工程大学)]

    [21]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 pp1-5

    [22]

    Vagle S, Burch H 2005 J. Acoust. Soc. Am. 117 1

    [23]

    Leightion T G, Ginfer D C, Chua G H, White P R, Dix J K 2011 J. Acoust. Soc. Am. 130 5

    [24]

    Chen W Z, 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214(in Chinese)[陈伟中2014声空化物理(北京:科学出版社)第341页]

  • [1] Li Fan, Zhang Xian-Mei, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Structure stability of cyclic chain-like cavitation cloud in thin liquid layer. Acta Physica Sinica, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [2] Hou Sen, Hu Chang-Qing, Zhao Mei. Inversion method for bubble size distribution with sound attenuation. Acta Physica Sinica, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [3] Ma Rui-Xuan, Wang Yi-Min, Zhang Shu-Hai, Wu Cong-Hai, Wang Xun-Nian. Numerical investigation of scale effect on acoustic scattering by vortex. Acta Physica Sinica, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [4] Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing. Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves. Acta Physica Sinica, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [5] Wang Yi-Min, Ma Rui-Xuan, Wu Cong-Hai, Luo Yong, Zhang Shu-Hai. Numerical study on spatial scale characteristics of sound scattering by a static isentropic vortex. Acta Physica Sinica, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [6] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [7] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [8] Zhou Yan-Ling, Fan Jun, Wang Bin. Inversion for acoustic parameters of plastic polymer target in water. Acta Physica Sinica, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [9] Jin Guo-Liang, Yin Jian-Fei, Wen Ji-Hong, Wen Xi-Sen. Investigation of underwater sound scattering on a cylindrical shell coated with anechoic coatings by the finite element method based on an equivalent parameter inversion. Acta Physica Sinica, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [10] Pan An, Fan Jun, Wang Bin, Chen Zhi-Gang, Zheng Guo-Yin. Acoustic scattering from the finite periodically ribbed two concentric cylindrical shells. Acta Physica Sinica, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [12] Hu Jing, Lin Shu-Yu, Wang Ceng-Hui, Li Jin. Study of resonance sound response for bubble cluster in ultrasonic field. Acta Physica Sinica, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [13] Wu Hai-Jun, Jiang Wei-Kang, Lu Wen-Bo. Multilevel fast multipole boundary element method for 3D acoustic problems and its applications. Acta Physica Sinica, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [14] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamical behaviors of a bubble cluster under ultrasound field. Acta Physica Sinica, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [15] Ke Wei-Na, Chen Qian, Qian Meng-Lu. Forward Mie scattering method applied to the measurement of the R(t) curve of single bubble sonoluminescence. Acta Physica Sinica, 2008, 57(6): 3629-3635. doi: 10.7498/aps.57.3629
    [16] Zhang A-Man, Yao Xiong_Liang, Li Jia. The dynamics of bubbles. Acta Physica Sinica, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [17] Xu Han, Chang Wen-Wei, Zhuo Hong-Bin. Forward Raman scattering in the wake-field induced by short-pulse laser. Acta Physica Sinica, 2003, 52(1): 135-139. doi: 10.7498/aps.52.135
    [18] Long Yun-Xiang, Miao Guo-Ping. . Acta Physica Sinica, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [19] You Yun-Xiang, Miu Guo-Peng. . Acta Physica Sinica, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] YOU YUN-XIANG, MIAO GUO-PING, LIU YING-ZHONG. A FAST ALGORITHM FOR VISUALIZING MULTIPLE THREE-DIMENSIONAL OBJECTS USING NEAR-FIELD ACOUSTIC MEASUREMENTS. Acta Physica Sinica, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
Metrics
  • Abstract views:  6281
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2016
  • Accepted Date:  29 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map