-
In recent years, organic-inorganic hybrid perovskite materials have been widely used in solar cells, photodetectors, and light-emitting diodes due to their advantages such as high light absorption coefficient, good carrier mobility, and long carrier diffusion length. However, the high toxicity of lead and poor stability still restrict the application and promotion of such materials. The lead-free double perovskite material derived from the concept of “heterovalent substitution”, while maintaining the high symmetrical structure of perovskite, avoids using the toxic lead elements, which has the advantages of environmental friendly, stable structure, and suitable band gap. At present, the limited research on lead-free double perovskite materials still leaves a big room to researchers, and such a limited research seriously restricts the development and promotion of such materials. Therefore, the relationship between the structure and performance of lead-free double perovskite materials needs further exploring in order to provide theoretical basis for the practical application of such materials. Here in this work, the lead-free double perovskite material Cs2TeCl6 is prepared by the solution method. The crystal structure and optical properties of the lead-free double perovskite Cs2TeCl6 under high pressure are investigated by using diamond anvil cell combined with in-situ high-pressure angle-dispersive X-ray diffraction and ultraviolet-visible absorption technology. The results show that the crystal structure of Cs2TeCl6 is not changed within the experimental pressure range of 0-50.0 GPa, and the structural symmetry of Fm-3m is still maintained, indicating the sample has good stability. The lattice constant and volume of Cs2TeCl6 gradually decrease within the pressure range of 0-50.0 GPa. The volume and pressure of Cs2TeCl6 are fitted using the third-order Birch-Mumaghan equation of state, the bulk elastic modulus is obtained to be B0 = (18.77 ± 2.88) GPa. The smaller bulk elastic modulus indicates that the lead-free double perovskite material Cs2TeCl6 has higher compressibility. The optical band gap of Cs2TeCl6 is 2.68(3) eV at 1 atm and its optical band gap gradually decreases with the increase of pressure, which is related to the shrinkage of octahedral [TeCl6]2– under high pressure. The calculation results show that the Cs2TeCl6 possesses an indirect band gap, the valence band maximum is mainly composed of Cl 3p orbits, and the conduction band minimum is mainly composed of Te 5p and Cl 3p orbits. After the pressure is completely relieved, Cs2TeCl6 returns to the initial state. The above conclusions further deepen the understanding of the crystal structure and optical properties of lead-free double perovskite Cs2TeCl6, and provide a theoretical basis for designing and optimizing the lead-free double perovskite materials.
-
Keywords:
- lead-free double perovskite /
- diamond anvil cell /
- high pressure /
- band gap
[1] Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar
[2] Chen J, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 e1902902Google Scholar
[3] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[4] Xu Y, Chen Q, Zhang C, Wang R, Wu H, Zhang X, Xing G, Yu W W, Wang X, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar
[5] Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y, Vardeny S R, Liu X, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[7] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html [2020-06-26]
[10] Wang Z, Shi Z, Li T, Chen Y, Huang W 2017 Angew. Chem. Int. Ed. 56 1190Google Scholar
[11] Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H 2018 Sci. Technol. Adv. Mater. 19 425Google Scholar
[12] Abate A 2017 Joule 1 659Google Scholar
[13] Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar
[14] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar
[15] Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z, Zhang L 2018 Joule 2 1662Google Scholar
[16] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar
[17] Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar
[18] Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar
[19] Greul E, Petrus M L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar
[20] 程金光 2017 66 037401Google Scholar
Cheng J G 2017 Acta Phys. Sin. 66 037401Google Scholar
[21] 董家君, 姚明光, 刘世杰, 刘冰冰 2017 66 039101Google Scholar
Dong J J, Yao M G, Liu S J, Liu B B, 2017 Acta Phys. Sin. 66 039101Google Scholar
[22] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 66 036102Google Scholar
Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102Google Scholar
[23] 时旭含, 李海燕, 姚震, 刘冰冰 2020 69 067101Google Scholar
Shi X H, Li H Y, Yao Z, Liu B B 2020 Acta Phys. Sin. 69 067101Google Scholar
[24] 王春杰, 王月, 高春晓 2020 69 147202Google Scholar
Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar
[25] Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556Google Scholar
[26] Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W, Zou B 2017 J. Am. Chem. Soc. 139 10087Google Scholar
[27] Zhang L, Zeng Q, Wang K 2017 J. Phys. Chem. Lett. 8 3752Google Scholar
[28] Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar
[29] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 66 030701Google Scholar
Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar
[30] Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969Google Scholar
[31] Wang L, Yao P, Wang F, Li S, Chen Y, Xia T, Guo E, Wang K, Zou B, Guo H 2020 Adv. Sci. 7 1902900Google Scholar
[32] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar
[33] Birch F 1978 J. Geophys. Res. 83 1257Google Scholar
[34] Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103Google Scholar
[35] Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663Google Scholar
[36] Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi 15 627Google Scholar
[37] Sa R, Wei Y, Zha W, Liu D 2020 Chem. Phys. Lett. 754 137538Google Scholar
[38] Wang L, Ou T, Wang K, Xiao G, Gao C, Zou B 2017 Appl. Phys. Lett. 111 233901Google Scholar
[39] Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. 113 8910Google Scholar
-
-
[1] Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar
[2] Chen J, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 e1902902Google Scholar
[3] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[4] Xu Y, Chen Q, Zhang C, Wang R, Wu H, Zhang X, Xing G, Yu W W, Wang X, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar
[5] Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y, Vardeny S R, Liu X, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[7] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html [2020-06-26]
[10] Wang Z, Shi Z, Li T, Chen Y, Huang W 2017 Angew. Chem. Int. Ed. 56 1190Google Scholar
[11] Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H 2018 Sci. Technol. Adv. Mater. 19 425Google Scholar
[12] Abate A 2017 Joule 1 659Google Scholar
[13] Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar
[14] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar
[15] Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z, Zhang L 2018 Joule 2 1662Google Scholar
[16] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar
[17] Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar
[18] Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar
[19] Greul E, Petrus M L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar
[20] 程金光 2017 66 037401Google Scholar
Cheng J G 2017 Acta Phys. Sin. 66 037401Google Scholar
[21] 董家君, 姚明光, 刘世杰, 刘冰冰 2017 66 039101Google Scholar
Dong J J, Yao M G, Liu S J, Liu B B, 2017 Acta Phys. Sin. 66 039101Google Scholar
[22] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 66 036102Google Scholar
Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102Google Scholar
[23] 时旭含, 李海燕, 姚震, 刘冰冰 2020 69 067101Google Scholar
Shi X H, Li H Y, Yao Z, Liu B B 2020 Acta Phys. Sin. 69 067101Google Scholar
[24] 王春杰, 王月, 高春晓 2020 69 147202Google Scholar
Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar
[25] Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556Google Scholar
[26] Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W, Zou B 2017 J. Am. Chem. Soc. 139 10087Google Scholar
[27] Zhang L, Zeng Q, Wang K 2017 J. Phys. Chem. Lett. 8 3752Google Scholar
[28] Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar
[29] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 66 030701Google Scholar
Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar
[30] Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969Google Scholar
[31] Wang L, Yao P, Wang F, Li S, Chen Y, Xia T, Guo E, Wang K, Zou B, Guo H 2020 Adv. Sci. 7 1902900Google Scholar
[32] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar
[33] Birch F 1978 J. Geophys. Res. 83 1257Google Scholar
[34] Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103Google Scholar
[35] Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663Google Scholar
[36] Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi 15 627Google Scholar
[37] Sa R, Wei Y, Zha W, Liu D 2020 Chem. Phys. Lett. 754 137538Google Scholar
[38] Wang L, Ou T, Wang K, Xiao G, Gao C, Zou B 2017 Appl. Phys. Lett. 111 233901Google Scholar
[39] Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. 113 8910Google Scholar
Catalog
Metrics
- Abstract views: 8599
- PDF Downloads: 299
- Cited By: 0