-
Piezochromic luminescent materials with multi-color switching have garnered considerable attention in fields such as displays, sensors, and biomedicine. However, enhancing the sensitivity of piezochromic color change through rational molecular design remains a significant challenge. Herein, we report the design, synthesis and high-pressure study of two 9-fluorenone derivatives of DPA-FO and DMAcr-FO, realizing pronounced piezochromic phenomena in both emission colors and crystal colors. DPA-FO features a classic donor–acceptor molecular architecture. Its emission wavelength is highly sensitive to the solvent polarity, with continuous redshifts with polarity increases, indicating the emission nature of intramolecular charge transfer (ICT) luminescence. Under pressure, the emission color gradually changes from yellow to red-brown with a pressure coefficient of the emission wavelength of 10.7 nm/GPa. To amplify the piezochromic response, we strategically modified the donor unit by replacing the diphenylamine (DPA) group with 9,9-dimethylacridan (DMAcr), a donor with stronger electron-donating ability. The resulting compound, DMAcr-FO, exhibits a more pronounced ICT process, as evidenced by its higher sensitivity of luminescence to solvent polarity. Under pressure, its emission color gradually changes from yellow to deep red. Correspondingly, the pressure coefficient of the emission wavelength increases 17.5 nm/GPa. Pressure-dependent UV-Vis absorption spectra reveal a continuous redshift in the absorption edge for both derivatives, attributed to structural contraction with enhanced orbital coupling. Notably, DMAcr-FO exhibits more significant changes in absorption edge and Stokes shift, indicating more substantial structural deformation under pressure. In addition, compared to DPA-FO, the infrared (IR) modes of DMAcr-FO present higher shifting rates with increasing pressure, also supports this conclusion. Meanwhile, with the increase of pressure, the considerable structural distortion is also one of the factors that make it have a more significant piezochromic phenomena. This study not only deepens the understanding of structure–property relationships in piezochromic materials but also offers a viable strategy for designing high-performance piezo-responsive luminophores through tailored molecular engineering.
-
[1] Li Q Q, Li Z 2020Acc. Chem. Res. 53 962
[2] Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019J. Mater. Chem. C 7 3263
[3] Jayaraman A, Laboratories B, Hill M, Jersey N 1983Rev. Mod. Phys. 55 65
[4] Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017Acta Phys. Sin. 66 030701(in Chinese) [郭宏伟,刘然,王玲瑞,崔金星,宋波,王凯,刘冰冰,邹勃2017 66 030701]
[5] Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017Acta Phys. Sin. 66 166201(in Chinese) [王君龙,张林基,刘其军,陈元正,沈如,何竹,唐斌,刘秀茹2017 66 166201]
[6] Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015Adv. Funct. Mater. 25 4005
[7] Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013J. Am. Chem. Soc. 135 10322
[8] Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021Nat. Commun. 12 4084
[9] Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018Angew. Chem. Int. Ed. 57 15670
[10] Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017J. Mater. Chem. C 5 12400
[11] Chen P Y, Curry M, Meyer T J 1988Inorg. Chem. 28 2271
[12] Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014J. Mater. Chem. C 2 1801
[13] Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020CCS Chem. 2 2084
[14] Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024Mater. Chem. Front. 8 3064
[15] Shen H, Li Y J, Li Y L 2020Aggregate 1 57
[16] Neha, Kaur N 2024Coordin. Chem. Rev. 521 216173
[17] Kulkarni A P, Kong X X, Jenekhe S A 2006Macromolecules 39 8699
[18] Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010Tetrahedron 66 9641
[19] Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019Dyes Pigm. 171 107763
[20] Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018Adv. Mater. 30 1704961
[21] Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025ACS Appl. Mater. Interfaces 17 21509
[22] Makula P, Pacia M, Macyk W 2018J. Phys. Chem. Lett. 9 6814
[23] Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021J. Mater. Chem. C 9 14815
[24] Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017Angew. Chem. Int. Ed. 56 254
[25] Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016J. Mater. Chem. C 4 9954
[26] Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025Chem. Eng. J. 507 160849
[27] Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020Adv. Funct. Mater. 30 2000105
[28] Zhao G J, Han K L 2009J. Phys. Chem. A 113 14329
[29] Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019Front. Chem. 7 276
[30] Gao F W, Zhong R L, Xu H L, Su Z M 2017J. Phys. Chem. C 121 25472
[31] Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009Chem. Eur. J. 15 4111
[32] Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998Chem. Phys. Lett. 287 455
[33] Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024APL Mater. 12 030602
[34] You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024Chem. Eng. J. 493 151597
[35] Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017CrystEngComm 19 7083
[36] Guan J W, Daljeet R, Kieran A, Song Y 2018J. Phys.: Condens. Matter 30 224004
[37] Park T R, Dreger Z A, Gupta Y M 2004J. Phys. Chem. B 108 3174
Metrics
- Abstract views: 88
- PDF Downloads: 2
- Cited By: 0