Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory

Gao Rong-Zhen Wang Jing Wang Jun-Sheng Huang Hou-Bing

Citation:

Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory

Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing
PDF
HTML
Get Citation
  • The electrocaloric effects in various types of materials, including inorganic perovskites, organic perovskites, organic polymers, molecular ferroelectrics and two-dimensional ferroelectric materials, possess great potential in realizing solid-state cooling devices due to the advantages of low-cost, high-efficiency and environmental friendly. Different ferroelectric materials have distinct characteristics in terms of phase transition and electrocaloric response. The mechanism for enhancing the electrocaloric effect currently remains elusive. Here, typical inorganic perovskite BaTiO3, PbTiO3 and BiFeO3, organic perovskite [MDABCO](NH4)I3, organic polymer P(VDF-TrFE), molecular ferroelectric ImClO4 and two-dimensional ferroelectric CuInP2S6 are selected to analyze the origins of their electrocaloric effects based on the Landau-Devonshire theory. The temperature-dependent pyroelectric coefficients and electrocaloric performances of different ferroelectric materials indicate that the first-order phase transition material MDABCO and the second-order phase transition material ImClO4 have excellent performances for electrocaloric refrigeration. The predicted results also strongly suggest that near the phase transition point of the ferroelectric material, the variation rate of free energy barrier height with temperature contributes to the polarizability change with temperature, resulting in enhanced electrocaloric effect. This present work provides a theoretical basis and a new insight into the further development of ferroelectric materials with high electrocaloric response.
      Corresponding author: Huang Hou-Bing, hbhuang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51972028) and the National Key R&D Program of China (Grant No. 2019YFA0307900).
    [1]

    Shi J Y, Han D L, Li Z C, Yang L, Lu S G, Zhong Z F, Chen J P, Zhang Q M, Qian X S 2019 Joule 3 1200Google Scholar

    [2]

    Liu G, Kong L, Hu Q, Zhang S 2020 Appl. Phys. Rev. 7 021405Google Scholar

    [3]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [4]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Xiao D Q, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [5]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [6]

    刘迪, 王静, 王俊升, 黄厚兵 2020 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [7]

    Kobeco P, Kurtchatov I 1930 Z. Phys. 66 192Google Scholar

    [8]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [9]

    Chen C, Wang S, Zhang T, Zhang C, Chi Q, Li W 2020 RSC Adv. 10 6603Google Scholar

    [10]

    Prasad S, Hou X, Zhang J, Wu S, Wang J 2020 IEEE Trans. Electron Devices 67 1769Google Scholar

    [11]

    Karthik J, Martin L W 2011 Appl. Phys. Lett. 99 032904Google Scholar

    [12]

    Sun X H, Huang H B, Ma X, Wen Y, Dang Z M 2018 J. Ceram. Sci. Technol. 9 201Google Scholar

    [13]

    Zhang G Z, Zhang X S, Huang H B, Wang J J, Li Q, Chen L Q, Wang Q 2016 Adv. Mater. 28 4811Google Scholar

    [14]

    Huang Y H, Wang J J, Yang T N, Wu Y J, Chen X M, Chen L Q 2018 Appl. Phys. Lett. 112 102901Google Scholar

    [15]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J S, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [16]

    Zhou Y, Lin Q, Liub W, Wang D 2016 RSC Adv. 6 14084Google Scholar

    [17]

    Hanani Z, Mezzane D, Amjoud M, Razumnaya A G, Fourcade S, Gagou Y, Hoummada K, El Marssi M, Goune M 2019 J. Mater. Sci.: Mater. Electron. 30 6430Google Scholar

    [18]

    Bai Y, Han X, Qiao L 2013 Appl. Phys. Lett. 102 252904Google Scholar

    [19]

    Weyland F, Hayati R, Novak N 2019 Ceram. Int. 45 11408Google Scholar

    [20]

    Sun X H, Huang H B, Jafri H M, Wang J S, Wen Y, Dang Z M 2019 Appl. Sci. 9 1672Google Scholar

    [21]

    Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S 2019 J. Alloys Compd. 803 185Google Scholar

    [22]

    Zheng G P, Uddin S, Zheng X, Yang J 2016 J. Alloys Compd. 663 249Google Scholar

    [23]

    Matsushita Y, Yoshimura T, Kiriya D, Fujimura N 2020 Appl. Phys. Express 13 041007Google Scholar

    [24]

    Aziguli H, Liu Y, Zhang G Z, Jiang S L, Yu P, Wang Q 2019 Europhys. Lett. 125 57001Google Scholar

    [25]

    Li J, Zhao X, Zhang T, Qian X, Hou Y, Yang L, Zhang Q M 2017 Phase Transitions 90 99Google Scholar

    [26]

    Qian X S, Yang T N, Zhang T, Chen L Q, Zhang Q M 2016 Appl. Phys. Lett. 108 142902Google Scholar

    [27]

    Qian J, Peng R, Shen Z, Jiang J, Xue F, Yang T, Chen L, Shen Y 2019 Adv. Mater. 31 1801949Google Scholar

    [28]

    Zhang G, Zhang X, Yang T, Li Q, Chen L Q, Jiang S, Wang Q 2015 ACS Nano 9 7164Google Scholar

    [29]

    Chen Y, Qian J, Yu J, Guo M, Zhang Q, Jiang J, Shen Z, Chen L Q, Shen Y 2020 Adv. Mater. 32 1907927Google Scholar

    [30]

    Yang Y, Zhou Z, Ke X, Wang Y, Su X, Li J, Bai Y, Ren X 2020 Scr. Mater. 174 44Google Scholar

    [31]

    Zhao C, Yang J, Huang Y, Hao X, Wu J 2019 J. Mater. Chem. A 7 25526Google Scholar

    [32]

    Mendez-Gonzalez Y, Pelaiz-Barranco A, Guerra J D S 2019 Appl. Phys. Lett. 114 162902Google Scholar

    [33]

    Lu B, Li P, Tang Z, Yao Y, Gao X, Kleemann W, Lu S G 2017 Sci. Rep. 7 45335Google Scholar

    [34]

    Sun X H, Huang H B, Wang J S, Wen Y Q, Dang Z M 2019 J. Alloys Compd. 777 821Google Scholar

    [35]

    Wu H H, Zhu J, Zhang T Y 2015 Nano Energy 16 419Google Scholar

    [36]

    Hou X, Wu H, Li H, Chen H, Wang J 2018 J. Phys.: Condens. Matter 30 465401Google Scholar

    [37]

    Wu H H, Zhu J, Zhang T Y 2015 RSC Adv. 5 37476Google Scholar

    [38]

    Liu Z, Yang B, Cao W, Lookman T 2018 Phys. Status Solidi B 255 1700469Google Scholar

    [39]

    Hou X, Li H, Shimada T, Kitamura T, Wang J 2018 J. Appl. Phys. 123 124103Google Scholar

    [40]

    Zeng Y K, Li B, Wang J B, Zhong X L, Wang W, Wang F, Zhou Y C 2014 RSC Adv. 4 30211Google Scholar

    [41]

    Si M W, Saha A K, Liao P Y, Gao S J, Neumayer S M, Jian J, Qin J K, Wisinger N B, Wang H Y, Maksymovych P, Wu W Z, Gupta S K, Ye P D 2019 ACS Nano 13 8760Google Scholar

    [42]

    Wang J J, Fortino D, Wang B, Zhao X, Chen L Q 2019 Adv. Mater. 32 1906224Google Scholar

    [43]

    Li W R, Jafri H M, Zhang C, Zhang Y J, Zhang H B, Huang H B, Jiang S L, Zhang G Z 2020 J. Mater. Chem. A 8 16189Google Scholar

    [44]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [45]

    Wang J J, Wu P P, Ma X Q, Chen L Q 2010 J. Appl. Phys. 108 114105Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Hsieh Y H, Xue F, Yang T N, Liu H J, Zhu Y M, Chen Y C, Zhan Q, Duan C G, Chen L Q, He Q, Chu Y H 2016 Nat. Commun. 7 13199Google Scholar

    [48]

    Bai G, Qin X, Xie Q, Gao C 2019 Physica B 560 208Google Scholar

    [49]

    Huang C, Yang H B, Gao C F 2018 J. Appl. Phys. 123 154102Google Scholar

    [50]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25Google Scholar

    [51]

    Bai G, Liu D, Gao C 2019 J. Appl. Phys. 126 164105Google Scholar

  • 图 1  不同铁电材料的极化及热释电系数随温度的变化 (a), (b) BTO, PTO, BFO, ImClO4, MDABCO, CIPS, P(VDF-TrFE)在电场为0 (a) 和5 MV/m (b) 时极化随温度的变化; (c)一级相变材料BTO, PTO, MDABCO, P(VDF-TrFE)在电场为5 MV/m时热释电系数随温度的变化; (d)二级相变材料BFO, ImClO4, CIPS在电场为5 MV/m时热释电系数随温度的变化

    Figure 1.  Temperature dependent polarization and pyroelectric coefficients obtained in different ferroelectric materials: (a), (b) Temperature-dependent polarization for BTO, PTO, BFO, ImClO4, MDABCO, CIPS, and P(VDF-TrFE) with the electric field of 0 and 5 MV/m, respectively; (c) temperature dependent pyroelectric coefficients for the first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE) with the electric field of 5 MV/m; (d) temperature dependent pyroelectric coefficients for the second-order phase transition materials BFO, ImClO4 and CIPS with the electric field of 5 MV/m.

    图 2  不同铁电材料的等温熵变和绝热温变在电场为5 MV·m–1时随温度的变化 (a), (c)一级相变材料BTO, PTO, MDABCO和P(VDF-TrFE)等温熵变和绝热温变随温度的变化; (b), (d)二级相变材料BFO, ImClO4和CIPS等温熵变和绝热温变随温度的变化

    Figure 2.  Temperature dependent ΔS and ΔT from different ferroelectric materials when the applied electric field is 5 MV/m: (a), (c) Temperature dependent ΔS and ΔT from the first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE), respectively; (b), (d) temperature dependent ΔS and ΔT from the second-order phase transition materials BFO, ImClO4 and CIPS, respectively.

    图 3  不同铁电材料的电卡强度ΔSE和ΔTE随温度的变化 (a), (c)一级相变材料BTO, PTO, MDABCO和P(VDF-TrFE) ΔSE和ΔTE随温度的变化; (b), (d)二级相变材料BFO, ImClO4和CIPS的ΔSE和ΔTE随温度的变化(图中实线代表在电场为5 MV/m时的计算结果, 带符号的虚线代表P(VDF-TrFE)在较大电场(40 MV/m)的计算结果, 符号代表参考文献中数据. Ref.a, Ref.b, Ref.c, Ref.d分别对应参考文献[42]、文献[24]、文献[43]、文献[41])

    Figure 3.  Temperature dependent EC strength ΔSE and ΔTE from different ferroelectric materials: (a), (c) Temperature dependent ΔSE and ΔTE from first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE); (b), (d) temperature dependent ΔSE and ΔTE from the second-order phase change materials BFO, ImClO4 and CIPS. The solid lines in the figure indicate the calculation results when the electric field is 5 MV/m, and the dotted lines with symbols indicate the calculation results of P(VDF-TrFE) in a larger electric field (40 MV/m). The symbols indicate the data in the references, Ref.a, Ref.b, Ref. c, Ref.d correspond to Ref. [42], Ref. [24], Ref. [43], Ref. [41] respectively

    图 4  不同铁电材料在TC-5, TC-3, TC-1 (K)温度下的电滞回线 (a), (c)一级相变材料MDABCO和BTO极化随电场的变化; (b), (d)二级相变材料ImClO4和CIPS极化随电场的变化

    Figure 4.  Hysteresis loops of different ferroelectric materials at temperature of TC-5, TC-3, TC-1 (K): (a), (c) Electric-field dependent of polarization from the first-order phase transition materials MDABCO and BTO; (b), (d) electric-field dependent of polarization from the second-order phase transition materials ImClO4 and CIPS.

    图 5  不同铁电材料在TC-5, TC-3, TC-1 (K)温度下自由能随极化的变化 (a), (c)一级相变材料MDABCO和BTO自由能随极化的变化; (b), (d)二级相变材料ImClO4和CIPS自由能随极化的变化; 图中三维彩色插入图为不同铁电材料在TC-5 (K)温度下的三维自由能曲面图

    Figure 5.  Free energy as a function of polarization from different ferroelectric materials at the temperature of TC-5, TC-3, TC-1 (K): (a), (c) Free energy curves as a function of polarization from first-order phase transition materials MDABCO and BTO; (b), (d) free energy curves as a function of polarization from second-order phase transition materials ImClO4 and CIPS. Three-dimensional inset figures show three-dimensional free energy surface at TC-5 (K) from different ferroelectric materials.

    表 1  不同铁电材料的Landau系数

    Table 1.  Landau coefficients of different kinds of ferroelectric materials.

    CoefficientsBaTiO3[45]PbTiO3[46]BiFeO3[47]ImClO4[43][MDABCO]
    (NH4)I3[42]
    CuInP2S6[41]P(VDF-TrFE)[26]
    α1/C–2·m2·N $\begin{array}{cc} & 5.0 \times 10^5 \times 160 \times\\& \Big[{\rm Coth}\Big(\dfrac{160}{T} \Big)–{\rm Coth} \Big(\dfrac{160}{390}\Big)\Big] \end{array}$3.8 × 105×
    (T – 752)
    4.646 × 105×
    (T – 1103)
    7.533 × 107×
    (T – 373)
    4.01 × 106×
    (T – 437)
    1.76 × 107×
    (T – 315)
    1.412 × 107×
    (T – 315)
    α11/C–4·m6·N–1.154×108–0.73×1082.290×1081.5×1011–7.032×1091.38×1011–1.842×1011
    α12/C–4·m6·N6.530×1087.5×1083.064×1081.124×108
    α111/C–6·m10·N–2.106×1092.6×1085.99×1092×1012α111(T)6.81×10132.585×1013
    α112/C–6·m10·N4.091×1096.1×108–3.340×1080
    α123/C–6·m10·N–6.688×109–3.7×109–1.778×109–2.018×1010
    α1111/C–8·m14·N7.590×1010
    α1112/C–8·m14·N–2.193×1010
    α1122/C–8·m14·N–2.221×1010
    α1123/C–8·m14·N2.416× 1010
    注: α111(T): T > T0(437 K), α111 = 3×1011; TT0, α111 = –3.5085×109× 55$\left[{\rm Coth}\left(\dfrac{55}{T}\right) \right.$ –Coth$\left.\left(\dfrac{55}{523}\right)\right]$.
    DownLoad: CSV

    表 2  不同铁电材料的比热容和密度

    Table 2.  Specific heat capacity and density of different ferroelectric materials.

    ParametersBaTiO3[35,37,42]PbTiO3[36,48,49]BiFeO3[20]ImClO4[43][MDABCO](NH4)I3[42]CuInP2S6[41]P(VDF-TrFE)[50,51]
    ρ/kg·m–36020830083461719403934051886
    C/J·m–3·K–13.05 × 1063.9 × 1062.88 × 1062.423 × 1064.039 × 1061.896 × 1062.244 × 106
    DownLoad: CSV
    Baidu
  • [1]

    Shi J Y, Han D L, Li Z C, Yang L, Lu S G, Zhong Z F, Chen J P, Zhang Q M, Qian X S 2019 Joule 3 1200Google Scholar

    [2]

    Liu G, Kong L, Hu Q, Zhang S 2020 Appl. Phys. Rev. 7 021405Google Scholar

    [3]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [4]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Xiao D Q, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [5]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [6]

    刘迪, 王静, 王俊升, 黄厚兵 2020 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [7]

    Kobeco P, Kurtchatov I 1930 Z. Phys. 66 192Google Scholar

    [8]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [9]

    Chen C, Wang S, Zhang T, Zhang C, Chi Q, Li W 2020 RSC Adv. 10 6603Google Scholar

    [10]

    Prasad S, Hou X, Zhang J, Wu S, Wang J 2020 IEEE Trans. Electron Devices 67 1769Google Scholar

    [11]

    Karthik J, Martin L W 2011 Appl. Phys. Lett. 99 032904Google Scholar

    [12]

    Sun X H, Huang H B, Ma X, Wen Y, Dang Z M 2018 J. Ceram. Sci. Technol. 9 201Google Scholar

    [13]

    Zhang G Z, Zhang X S, Huang H B, Wang J J, Li Q, Chen L Q, Wang Q 2016 Adv. Mater. 28 4811Google Scholar

    [14]

    Huang Y H, Wang J J, Yang T N, Wu Y J, Chen X M, Chen L Q 2018 Appl. Phys. Lett. 112 102901Google Scholar

    [15]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J S, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [16]

    Zhou Y, Lin Q, Liub W, Wang D 2016 RSC Adv. 6 14084Google Scholar

    [17]

    Hanani Z, Mezzane D, Amjoud M, Razumnaya A G, Fourcade S, Gagou Y, Hoummada K, El Marssi M, Goune M 2019 J. Mater. Sci.: Mater. Electron. 30 6430Google Scholar

    [18]

    Bai Y, Han X, Qiao L 2013 Appl. Phys. Lett. 102 252904Google Scholar

    [19]

    Weyland F, Hayati R, Novak N 2019 Ceram. Int. 45 11408Google Scholar

    [20]

    Sun X H, Huang H B, Jafri H M, Wang J S, Wen Y, Dang Z M 2019 Appl. Sci. 9 1672Google Scholar

    [21]

    Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S 2019 J. Alloys Compd. 803 185Google Scholar

    [22]

    Zheng G P, Uddin S, Zheng X, Yang J 2016 J. Alloys Compd. 663 249Google Scholar

    [23]

    Matsushita Y, Yoshimura T, Kiriya D, Fujimura N 2020 Appl. Phys. Express 13 041007Google Scholar

    [24]

    Aziguli H, Liu Y, Zhang G Z, Jiang S L, Yu P, Wang Q 2019 Europhys. Lett. 125 57001Google Scholar

    [25]

    Li J, Zhao X, Zhang T, Qian X, Hou Y, Yang L, Zhang Q M 2017 Phase Transitions 90 99Google Scholar

    [26]

    Qian X S, Yang T N, Zhang T, Chen L Q, Zhang Q M 2016 Appl. Phys. Lett. 108 142902Google Scholar

    [27]

    Qian J, Peng R, Shen Z, Jiang J, Xue F, Yang T, Chen L, Shen Y 2019 Adv. Mater. 31 1801949Google Scholar

    [28]

    Zhang G, Zhang X, Yang T, Li Q, Chen L Q, Jiang S, Wang Q 2015 ACS Nano 9 7164Google Scholar

    [29]

    Chen Y, Qian J, Yu J, Guo M, Zhang Q, Jiang J, Shen Z, Chen L Q, Shen Y 2020 Adv. Mater. 32 1907927Google Scholar

    [30]

    Yang Y, Zhou Z, Ke X, Wang Y, Su X, Li J, Bai Y, Ren X 2020 Scr. Mater. 174 44Google Scholar

    [31]

    Zhao C, Yang J, Huang Y, Hao X, Wu J 2019 J. Mater. Chem. A 7 25526Google Scholar

    [32]

    Mendez-Gonzalez Y, Pelaiz-Barranco A, Guerra J D S 2019 Appl. Phys. Lett. 114 162902Google Scholar

    [33]

    Lu B, Li P, Tang Z, Yao Y, Gao X, Kleemann W, Lu S G 2017 Sci. Rep. 7 45335Google Scholar

    [34]

    Sun X H, Huang H B, Wang J S, Wen Y Q, Dang Z M 2019 J. Alloys Compd. 777 821Google Scholar

    [35]

    Wu H H, Zhu J, Zhang T Y 2015 Nano Energy 16 419Google Scholar

    [36]

    Hou X, Wu H, Li H, Chen H, Wang J 2018 J. Phys.: Condens. Matter 30 465401Google Scholar

    [37]

    Wu H H, Zhu J, Zhang T Y 2015 RSC Adv. 5 37476Google Scholar

    [38]

    Liu Z, Yang B, Cao W, Lookman T 2018 Phys. Status Solidi B 255 1700469Google Scholar

    [39]

    Hou X, Li H, Shimada T, Kitamura T, Wang J 2018 J. Appl. Phys. 123 124103Google Scholar

    [40]

    Zeng Y K, Li B, Wang J B, Zhong X L, Wang W, Wang F, Zhou Y C 2014 RSC Adv. 4 30211Google Scholar

    [41]

    Si M W, Saha A K, Liao P Y, Gao S J, Neumayer S M, Jian J, Qin J K, Wisinger N B, Wang H Y, Maksymovych P, Wu W Z, Gupta S K, Ye P D 2019 ACS Nano 13 8760Google Scholar

    [42]

    Wang J J, Fortino D, Wang B, Zhao X, Chen L Q 2019 Adv. Mater. 32 1906224Google Scholar

    [43]

    Li W R, Jafri H M, Zhang C, Zhang Y J, Zhang H B, Huang H B, Jiang S L, Zhang G Z 2020 J. Mater. Chem. A 8 16189Google Scholar

    [44]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [45]

    Wang J J, Wu P P, Ma X Q, Chen L Q 2010 J. Appl. Phys. 108 114105Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Hsieh Y H, Xue F, Yang T N, Liu H J, Zhu Y M, Chen Y C, Zhan Q, Duan C G, Chen L Q, He Q, Chu Y H 2016 Nat. Commun. 7 13199Google Scholar

    [48]

    Bai G, Qin X, Xie Q, Gao C 2019 Physica B 560 208Google Scholar

    [49]

    Huang C, Yang H B, Gao C F 2018 J. Appl. Phys. 123 154102Google Scholar

    [50]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25Google Scholar

    [51]

    Bai G, Liu D, Gao C 2019 J. Appl. Phys. 126 164105Google Scholar

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] Zou Xing, Zhu Zhe, Fang Wen-Xiao. Simulation of surface stress and solid solution modification phase field of nanowire electrocaloric effect. Acta Physica Sinica, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [3] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu. Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy. Acta Physica Sinica, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [4] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [5] Tang Hui, Niu Xiang, Yang Zhi-Peng, Peng Xiao-Cao, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo, Tang Xin-Gui, Lu Sheng-Guo. Giant electrocaloric effect enhancement due to the polarization flip and influence of Mn4+ doping on the dielectric, ferroelectric properties in 0.7BiFeO3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [6] Bai Gang, Han Yu-Hang, Gao Cun-Fa. Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains. Acta Physica Sinica, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [7] Lin Cui, Bai Gang, Li Wei, Gao Cun-Fa. Strain tuning of negative capacitance in epitaxial PbZr0.2Ti0.8O3 thin films. Acta Physica Sinica, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [11] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [12] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [13] Lu Sheng-Guo, Li Dan-Dan, Lin Xiong-Wei, Jian Xiao-Dong, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo. Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics. Acta Physica Sinica, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [14] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [15] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [16] Tang Xian-Zhu, Peng Zeng-Hui, Liu Yong-Gang, Lu Xing-Hai, Xuan Li. The influence of thermodynamic equilibrium state prior to the phase transition on the alignment of ferroelectric liquid crystal. Acta Physica Sinica, 2010, 59(9): 6261-6265. doi: 10.7498/aps.59.6261
    [17] Wang Lei, Yang Cheng-Tao, Xie Qun-Tiao, Ye Jing-Hong. The modeling and analysis of magnetoelectric effect in bilayer nanocomposites. Acta Physica Sinica, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [18] Xu Guo-Cheng, Pan Ling, Guan Qing-Feng, Zou Guang-Tian. Crystallization of amorphous bismuth titanate. Acta Physica Sinica, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [19] Tao Yong-Mei, Jiang Qing, Cao Hai-Xia. Impact of stress on the thermodynamic properties of ferroelectric films within the transverse Ising model. Acta Physica Sinica, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [20] Shi Zhan, Nan Ce-Wen. Calculations of magnetoelectric properties in three-phase ferroelectric and ferromagnetic particulate composites. Acta Physica Sinica, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
Metrics
  • Abstract views:  12911
  • PDF Downloads:  747
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2020
  • Accepted Date:  06 August 2020
  • Available Online:  13 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回
Baidu
map