搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下非铅双钙钛矿Cs2TeCl6的光电性质调控研究

吴姝颖 马帅领 赵春燕 李世新 叶梅艳 戚梦瑶 赵行斌 王玲瑞 崔田

引用本文:
Citation:

高压下非铅双钙钛矿Cs2TeCl6的光电性质调控研究

吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田

Pressure-Modulated Bandgap and Optoelectronic Properties in Lead-Free Double Perovskite Cs2TeCl6

WU Shuying, MA Shuailing, ZHAO Chunyan, LI Shixin, YE Meiyan, QI Mengyao, ZHAO Xingbin, WANG Lingrui, CUI Tian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光电探测器在光通信、环境监测、医疗成像等多个领域发挥着关键作用,开发高性能的光电探测器相关材料已经成为研究热点。A2BX6型空位有序双钙钛矿因其优异的光电特性备受关注,然而实现其光电性能的连续调控与提升依然十分困难。本文利用压力实现了Cs2TeCl6在高压下原位光电响应的有效调控。实验研究表明,Cs2TeCl6的光电响应在高压下呈现非单调变化:初始阶段光电流随压力增加而减弱,但在21.7 GPa后出现显著逆转。通过高压原位拉曼光谱和紫外-可见吸收光谱分析,发现这一转变与材料进入强化压缩阶段密切相关。在此阶段,带隙减小速率加快,显著改善了间接带隙材料的本征弱吸收特性,使得原先无法激发的低能光子得以有效利用。该工作不仅阐明了压力诱导的Cs2TeCl6微观结构与光电性能的内在关联,还为通过应力工程调控此类钙钛矿材料光电特性提供了新的研究思路。
    As a core component of modern optoelectronic systems, photodetectors play an indispensable role in optical communications, environmental monitoring, medical imaging, and military detection. With the rapid development of related technologies, the development of novel photodetector materials featuring high sensitivity, fast response, and excellent stability has become a key research focus. Among various candidate materials, A₂BX₆-type vacancy-ordered double perovskites have attracted significant attention due to their unique crystal structures and outstanding optoelectronic properties. These materials not only possess tunable bandgap structures and high carrier mobility but also demonstrate excellent environmental stability, showing broad application prospects in the field of photodetection.This study systematically investigated the optoelectronic response behavior of a representative lead-free double perovskite, Cs2TeCl6, under high-pressure conditions. Precise experimental observations revealed an anomalous transition in photocurrent from decrease to increase when the pressure reached 18 GPa. By employing advanced characterization techniques, including high-pressure in situ Raman spectroscopy, UV-Vis absorption spectroscopy, and synchrotron X-ray diffraction, we elucidated the underlying physical mechanism:at the critical pressure of 18 GPa, the material enters an intensified compression stage, leading to a significantly accelerated bandgap narrowing rate. This continuous reduction in bandgap effectively mitigates the weak absorption limitation of the indirect bandgap, enabling efficient absorption of previously unexcitable low-energy photons and ultimately resulting in enhanced photocurrent.This discovery not only clarifies the intrinsic relationship between the structure and optoelectronic properties of Cs2TeCl6 at the microscopic level but, more importantly, provides new insights for regulating the optoelectronic performance of perovskite materials through pressure engineering. The findings offer important guidance for developing novel high-performance photodetection devices and establish a valuable research methodology for optimizing other semiconductor materials. In the future, by further refining material compositions and pressure modulation strategies, the design and fabrication of more efficient and stable photodetector materials can be anticipated.
  • [1]

    Li Y, Shi Z F, Li X J, Shan C X 2019Chin. Phys. B 28 017803

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014Nature Nanotechnology 9 687

    [3]

    Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016ACS Photonics 3 1150

    [4]

    Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395

    [5]

    Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019Nat. Commun. 10 129

    [6]

    Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016J. Am. Chem. Soc. 138 3761

    [7]

    Chen J Z, Zhao X, Kim S G, Park N G 2019Adv. Mater. 31 1902902

    [8]

    Ghosh S, Shankar H, Kar P 2022Mater. Adv. 3 3742

    [9]

    Muscarella L A, Hutter E M 2022ACS Energy Lett. 7 2128

    [10]

    Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024Acta Physico-Chimica Sinica 40 2303004(in Chinese)[Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军2024 40 2303004]

    [11]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017Nat Rev Mater 2 17005

    [12]

    Bassett W A 2009High Pressure Research 29 163

    [13]

    Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019Adv. Sci. 6 1900399

    [14]

    Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020ACS Energy Letters 5 2174

    [15]

    McMillan P F 2002Nature Materials 1 19

    [16]

    Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025Angew Chem Int Ed 64 202418587

    [17]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023Advanced Science 10 2205837

    [18]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023Cell Reports Physical Science 4 101663

    [19]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023Materials Research Letters 11 134

    [20]

    Guo S H, Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024CCS Chem 6 1748

    [21]

    Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024Nat Commun 15 3001

    [22]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024Small 20 2405692

    [23]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016J. Am. Chem. Soc. 138 8453

    [24]

    Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017Chem. Sci. 8 4497

    [25]

    Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020J. Am. Chem. Soc. 142 16001

    [26]

    Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023Advanced Optical Materials 11 2202634

    [27]

    Yao P P, Wang L R, Wang J X, Guo H Z 2020Acta Phys. Sin. 69 218801(in Chinese)[姚盼盼, 王玲瑞, 王家祥, 郭海中2020 69 218801]

    [28]

    Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021Mater. Adv. 2 1043

    [29]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021Advanced Optical Materials 9 2101163

    [30]

    Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021J. Phys. Chem. C 125 25126

  • [1] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能研究.  , doi: 10.7498/aps.74.20250613
    [2] 陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海. 高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究.  , doi: 10.7498/aps.74.20250287
    [3] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析.  , doi: 10.7498/aps.73.20231101
    [4] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变.  , doi: 10.7498/aps.72.20230730
    [5] 田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉. 谐振型电光相位调制及光电探测功能器件的研发及应用.  , doi: 10.7498/aps.72.20230485
    [6] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , doi: 10.7498/aps.72.20221656
    [7] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , doi: 10.7498/aps.72.20230020
    [8] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为.  , doi: 10.7498/aps.71.20212276
    [9] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , doi: 10.7498/aps.70.20201325
    [10] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , doi: 10.7498/aps.69.20200988
    [11] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质.  , doi: 10.7498/aps.68.20190630
    [12] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , doi: 10.7498/aps.66.198501
    [13] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , doi: 10.7498/aps.62.107402
    [14] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , doi: 10.7498/aps.62.046202
    [15] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , doi: 10.7498/aps.62.049101
    [16] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析.  , doi: 10.7498/aps.61.234205
    [17] 马丽, 朱志永, 李敏, 于世丹, 崔启良, 周强, 陈京兰, 吴光恒. 铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性.  , doi: 10.7498/aps.58.3479
    [18] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究.  , doi: 10.7498/aps.56.4847
    [19] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固.  , doi: 10.7498/aps.53.2378
    [20] 柴永泉, 靳常青, 刘邦贵. 类MgB2硼化物晶体电子结构比较研究.  , doi: 10.7498/aps.52.2883
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-18

/

返回文章
返回
Baidu
map