-
In the light of the open circuit voltage and fill factor reduction resulting from band gap discontinuities and high defect densities at interfaces when more germanium is mixed into the intrinsic layer of hydrogenated amorphous silicon germanium solar cell, the insertion of a-Si:H buffer layer with proper band gap into PI interface not only mitigates band gap discontinuities and interface recombination, but also improves the electric field distribution by reducing the defect densities at PI interface, thus the collection efficiency of a-SiGe:H solar cell is enhanced. By inserting a-Si:H buffer layer into IN interface and designing band gap profile along the a-SiGe:H intrinsic layer further, the 8.72% conversion efficiency of single junction a-SiGe:H solar cell is achieved when only Al back reflector is added as back contact.
-
Keywords:
- a-Si:H buffer layer /
- hydrogenated amorphous silicon germanium solar cell /
- band gap /
- interface
[1] Mackenzie K D, Eggert J R, Leopold D J, Li Y M, Lin S, Paul W 1985 Phys. Rev. B 31 2198
[2] Yang J, Yan B, Guha S 2005 Thin Solid Films 487 162
[3] Deng X, Liao X, Han S, Povolny H, Agarwal P 2000 Solar Energy Materials and Solar Cells 62 89
[4] Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512
[5] Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖 2011 60 068801]
[6] Zhang X D, Zheng X X, Xu S Z, Lin Q, Wei C C, Sun J, Geng X H, Zhao Y 2011 Chin. Phys. B 20 108801
[7] Lundszien D, Finger F, Wagner H 2002 Solar Energy Materials and Solar Cells 74 365
[8] Zimmer J, Stiebig H, Wagner H 1998 J. Appl. Phys. 84 611
[9] Crandall R S 1983 J. Appl. Phys. 54 7176
[10] Okamoto H, Kida H, Nonomura S, Fukumoto K, Hamakawa Y 1983 J. Appl. Phys. 54 3236
[11] Hegedus S S 1997 Prog. Photovolt.: Res. Appl. 5 151
[12] Deng X 2005 Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE Lake Buena Vista, USA, January 3–7, 2005 1365
[13] Arya R R, Bennett M S, Rajan K, Catalano A 1989 Appl. Phys. Lett. 55 1894
[14] Jimenez Z R, Rubinelli F A, Rath J K, Schropp R E I 2002 J. Non-Cryst. Solids 299 1131
[15] Hegedus S S, Salzman N, Fagen E 1988 J. Appl. Phys. 63 5126
[16] Merten J, Voz C, Munoz A, Asensi J M Andreu J 1999 Solar Energy Materials and Solar Cells 57 153
-
[1] Mackenzie K D, Eggert J R, Leopold D J, Li Y M, Lin S, Paul W 1985 Phys. Rev. B 31 2198
[2] Yang J, Yan B, Guha S 2005 Thin Solid Films 487 162
[3] Deng X, Liao X, Han S, Povolny H, Agarwal P 2000 Solar Energy Materials and Solar Cells 62 89
[4] Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512
[5] Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖 2011 60 068801]
[6] Zhang X D, Zheng X X, Xu S Z, Lin Q, Wei C C, Sun J, Geng X H, Zhao Y 2011 Chin. Phys. B 20 108801
[7] Lundszien D, Finger F, Wagner H 2002 Solar Energy Materials and Solar Cells 74 365
[8] Zimmer J, Stiebig H, Wagner H 1998 J. Appl. Phys. 84 611
[9] Crandall R S 1983 J. Appl. Phys. 54 7176
[10] Okamoto H, Kida H, Nonomura S, Fukumoto K, Hamakawa Y 1983 J. Appl. Phys. 54 3236
[11] Hegedus S S 1997 Prog. Photovolt.: Res. Appl. 5 151
[12] Deng X 2005 Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE Lake Buena Vista, USA, January 3–7, 2005 1365
[13] Arya R R, Bennett M S, Rajan K, Catalano A 1989 Appl. Phys. Lett. 55 1894
[14] Jimenez Z R, Rubinelli F A, Rath J K, Schropp R E I 2002 J. Non-Cryst. Solids 299 1131
[15] Hegedus S S, Salzman N, Fagen E 1988 J. Appl. Phys. 63 5126
[16] Merten J, Voz C, Munoz A, Asensi J M Andreu J 1999 Solar Energy Materials and Solar Cells 57 153
Catalog
Metrics
- Abstract views: 5835
- PDF Downloads: 447
- Cited By: 0