搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下9-芴酮衍生物的变色效应研究

王亚楠 陈姿润 王亚云 李爱森 李磊 李茜 王凯

引用本文:
Citation:

高压下9-芴酮衍生物的变色效应研究

王亚楠, 陈姿润, 王亚云, 李爱森, 李磊, 李茜, 王凯

Piezochromic phenomena of 9-fluorenone derivatives

Wang Ya-Nan, Chen Zi-Run, Wang Ya-Yun, Li Ai-Sen, Li Lei, Li Qian, Wang Kai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 压致变色有机发光材料是智能发光材料的重要分支,凭借多色切换特性在显示、传感和生物医学等领域备受关注.然而,利用合理分子设计有效促进材料的压致光谱位移仍是该领域的重要挑战.本研究首先基于二苯胺(DPA)给体与9-芴酮(FO)受体设计并制备了给体-受体型DPA-FO分子.其荧光发射波长随压力变化的压力系数为10.7 nm/GPa,展现出明显的压致变色效应.为了优化该力敏发光特性,我们基于区域选择性结构设计,在给体中引入分子构象“锁”并增强给体推电子效应,以9,9-二甲基吖啶(DMAcr)作为给体基元,设计合成了具有更强分子内电荷转移特性的DMAcr-FO分子.该分子荧光发射波长的压力系数显著提升至17.5 nm/GPa.进一步结构表征表明,该现象源于DMAcr-FO更为显著的压致结构收缩.本研究不仅有助于深入理解力敏智能有机发光材料的结构—性质关系,也为新型压致变色发光材料的设计提供了新思路.
    Piezochromic luminescent materials with multi-color switching have garnered considerable attention in fields such as displays, sensors, and biomedicine. However, enhancing the sensitivity of piezochromic color change through rational molecular design remains a significant challenge. Herein, we report the design, synthesis and high-pressure study of two 9-fluorenone derivatives of DPA-FO and DMAcr-FO, realizing pronounced piezochromic phenomena in both emission colors and crystal colors. DPA-FO features a classic donor–acceptor molecular architecture. Its emission wavelength is highly sensitive to the solvent polarity, with continuous redshifts with polarity increases, indicating the emission nature of intramolecular charge transfer (ICT) luminescence. Under pressure, the emission color gradually changes from yellow to red-brown with a pressure coefficient of the emission wavelength of 10.7 nm/GPa. To amplify the piezochromic response, we strategically modified the donor unit by replacing the diphenylamine (DPA) group with 9,9-dimethylacridan (DMAcr), a donor with stronger electron-donating ability. The resulting compound, DMAcr-FO, exhibits a more pronounced ICT process, as evidenced by its higher sensitivity of luminescence to solvent polarity. Under pressure, its emission color gradually changes from yellow to deep red. Correspondingly, the pressure coefficient of the emission wavelength increases 17.5 nm/GPa. Pressure-dependent UV-Vis absorption spectra reveal a continuous redshift in the absorption edge for both derivatives, attributed to structural contraction with enhanced orbital coupling. Notably, DMAcr-FO exhibits more significant changes in absorption edge and Stokes shift, indicating more substantial structural deformation under pressure. In addition, compared to DPA-FO, the infrared (IR) modes of DMAcr-FO present higher shifting rates with increasing pressure, also supports this conclusion. Meanwhile, with the increase of pressure, the considerable structural distortion is also one of the factors that make it have a more significant piezochromic phenomena. This study not only deepens the understanding of structure–property relationships in piezochromic materials but also offers a viable strategy for designing high-performance piezo-responsive luminophores through tailored molecular engineering.
  • [1]

    Li Q Q, Li Z 2020Acc. Chem. Res. 53 962

    [2]

    Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019J. Mater. Chem. C 7 3263

    [3]

    Jayaraman A, Laboratories B, Hill M, Jersey N 1983Rev. Mod. Phys. 55 65

    [4]

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017Acta Phys. Sin. 66 030701(in Chinese) [郭宏伟,刘然,王玲瑞,崔金星,宋波,王凯,刘冰冰,邹勃2017 66 030701]

    [5]

    Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017Acta Phys. Sin. 66 166201(in Chinese) [王君龙,张林基,刘其军,陈元正,沈如,何竹,唐斌,刘秀茹2017 66 166201]

    [6]

    Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015Adv. Funct. Mater. 25 4005

    [7]

    Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013J. Am. Chem. Soc. 135 10322

    [8]

    Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021Nat. Commun. 12 4084

    [9]

    Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018Angew. Chem. Int. Ed. 57 15670

    [10]

    Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017J. Mater. Chem. C 5 12400

    [11]

    Chen P Y, Curry M, Meyer T J 1988Inorg. Chem. 28 2271

    [12]

    Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014J. Mater. Chem. C 2 1801

    [13]

    Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020CCS Chem. 2 2084

    [14]

    Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024Mater. Chem. Front. 8 3064

    [15]

    Shen H, Li Y J, Li Y L 2020Aggregate 1 57

    [16]

    Neha, Kaur N 2024Coordin. Chem. Rev. 521 216173

    [17]

    Kulkarni A P, Kong X X, Jenekhe S A 2006Macromolecules 39 8699

    [18]

    Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010Tetrahedron 66 9641

    [19]

    Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019Dyes Pigm. 171 107763

    [20]

    Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018Adv. Mater. 30 1704961

    [21]

    Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025ACS Appl. Mater. Interfaces 17 21509

    [22]

    Makula P, Pacia M, Macyk W 2018J. Phys. Chem. Lett. 9 6814

    [23]

    Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021J. Mater. Chem. C 9 14815

    [24]

    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017Angew. Chem. Int. Ed. 56 254

    [25]

    Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016J. Mater. Chem. C 4 9954

    [26]

    Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025Chem. Eng. J. 507 160849

    [27]

    Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020Adv. Funct. Mater. 30 2000105

    [28]

    Zhao G J, Han K L 2009J. Phys. Chem. A 113 14329

    [29]

    Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019Front. Chem. 7 276

    [30]

    Gao F W, Zhong R L, Xu H L, Su Z M 2017J. Phys. Chem. C 121 25472

    [31]

    Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009Chem. Eur. J. 15 4111

    [32]

    Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998Chem. Phys. Lett. 287 455

    [33]

    Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024APL Mater. 12 030602

    [34]

    You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024Chem. Eng. J. 493 151597

    [35]

    Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017CrystEngComm 19 7083

    [36]

    Guan J W, Daljeet R, Kieran A, Song Y 2018J. Phys.: Condens. Matter 30 224004

    [37]

    Park T R, Dreger Z A, Gupta Y M 2004J. Phys. Chem. B 108 3174

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , doi: 10.7498/aps.72.20221942
    [2] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , doi: 10.7498/aps.69.20200988
    [3] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响.  , doi: 10.7498/aps.68.20190422
    [4] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究.  , doi: 10.7498/aps.66.030701
    [5] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , doi: 10.7498/aps.65.037701
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响.  , doi: 10.7498/aps.64.247802
    [7] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa.  , doi: 10.7498/aps.62.180703
    [8] 刘燕文, 王小霞, 朱虹, 韩勇, 谷兵, 陆玉新, 方荣. 金刚石材料对螺旋线慢波组件散热性能的影响.  , doi: 10.7498/aps.62.234402
    [9] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响.  , doi: 10.7498/aps.62.188101
    [10] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构.  , doi: 10.7498/aps.61.127804
    [11] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究.  , doi: 10.7498/aps.61.058102
    [12] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究.  , doi: 10.7498/aps.61.097803
    [13] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿).  , doi: 10.7498/aps.60.127203
    [14] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , doi: 10.7498/aps.59.4235
    [15] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟.  , doi: 10.7498/aps.58.4888
    [16] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响.  , doi: 10.7498/aps.57.3397
    [17] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图.  , doi: 10.7498/aps.54.307
    [18] 苗润才, 傅克德, 李向, 刘西社, 张长安. 金属银表面-分子体系中电荷转移效应的形成过程.  , doi: 10.7498/aps.40.454
    [19] 苗润才, 潘多海, 张鹏翔, 李秀英. 金属银表面-分子体系中的电荷转移效应.  , doi: 10.7498/aps.37.1870
    [20] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察.  , doi: 10.7498/aps.29.1351
计量
  • 文章访问数:  89
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-25

/

返回文章
返回
Baidu
map