-
In this paper, we have examined the thermal stability of Pt-Au core-shell nanoparticle by using molecular dynamics simulations with embedded-atom potential. The results show that the melting point of Pt-Au core-shell nanoparticle is significantly higher than that of pure Au one but lower than that of Pt one. By the analyses of Lindemann index, it is discovered that the melting first occurs in Au shell, then spreads into interior, finally the overall melting of Pt core appears. The temperature range of melting is much broader for Pt-Au core-shell nanoparticle than for Au and Pt nanoparticles. Moreover, Pt-Au core-shell nanoparticle exhibits a distinct two-stage melting during continuous heating, and the structure of solid (core)-liquid (shell) coexistence has been observed between two meltings.
-
Keywords:
- nanoparticle /
- melting /
- molecular dynamics
[1] Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371
[2] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167
[3] Serpell C J, Cookson J, Ozkaya D, Beer P D 2011 Nat. Chem. 3 478
[4] Wang L, Yamauchi Y 2011 Chem. Mater. 23 2457
[5] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157
[6] Ding Y, Fan F R, Tian Z Q, Wang Z L 2010 J. Am. Chem. Soc. 132 12480
[7] Mei Q S, Lu K 2007 Prog. Mater. Sci. 52 1175
[8] Liu H B, Pal U, Ascencio J A 2008 J. Phys. Chem. C 112 19173
[9] Yang Z, Yang X N, Xu Z J 2008 J. Phys. Chem. C 112 4937
[10] Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026
[11] Perrault S D, Chan W C W 2009 J. Am. Chem. Soc. 131 17042
[12] Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43
[13] Wen Y H, Zhang Y, Zheng J C, Zhu Z Z, Sun S G 2009 J. Phys. Chem. C 113 20611
[14] Subbaraman R, Sankaranarayanan S K R S 2011 Phys. Rev. B 84 075434
[15] Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 11837
[16] Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323
[17] Jin Z H, Gumbsch P, Lu K, Ma E 2001 Phys. Rev. Lett. 87 055703
[18] Tian H C, Liu L, Wen Y H 2009 Acta Phys. Sin. 58 4080 (in Chinese) [田惠忱, 刘丽, 文玉华 2009 58 4080]
[19] Li G J, Wang Q, Li D G, He J C 2009 Mater. Chem. Phys. 114 746
-
[1] Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371
[2] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167
[3] Serpell C J, Cookson J, Ozkaya D, Beer P D 2011 Nat. Chem. 3 478
[4] Wang L, Yamauchi Y 2011 Chem. Mater. 23 2457
[5] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157
[6] Ding Y, Fan F R, Tian Z Q, Wang Z L 2010 J. Am. Chem. Soc. 132 12480
[7] Mei Q S, Lu K 2007 Prog. Mater. Sci. 52 1175
[8] Liu H B, Pal U, Ascencio J A 2008 J. Phys. Chem. C 112 19173
[9] Yang Z, Yang X N, Xu Z J 2008 J. Phys. Chem. C 112 4937
[10] Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026
[11] Perrault S D, Chan W C W 2009 J. Am. Chem. Soc. 131 17042
[12] Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43
[13] Wen Y H, Zhang Y, Zheng J C, Zhu Z Z, Sun S G 2009 J. Phys. Chem. C 113 20611
[14] Subbaraman R, Sankaranarayanan S K R S 2011 Phys. Rev. B 84 075434
[15] Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 11837
[16] Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323
[17] Jin Z H, Gumbsch P, Lu K, Ma E 2001 Phys. Rev. Lett. 87 055703
[18] Tian H C, Liu L, Wen Y H 2009 Acta Phys. Sin. 58 4080 (in Chinese) [田惠忱, 刘丽, 文玉华 2009 58 4080]
[19] Li G J, Wang Q, Li D G, He J C 2009 Mater. Chem. Phys. 114 746
Catalog
Metrics
- Abstract views: 7368
- PDF Downloads: 789
- Cited By: 0