-
The application of thermophotovoltaic energy conversion device to recovery and utilization of high-grade thermal energy are limited by its irreversible loss. In this work, we reveal the source of irreversible loss and provide a strategy for improving the performance of thermophotovoltaic energy conversion device. The maximum efficiency of thermophotovoltaic energy conversion device under ideal condition is determined by using the theory of semiconductor physics and Planck thermal radiation. Moreover, the effects of non-radiative recombination and irreversible heat transfer loss on the electrical, optical, and thermal characteristics of thermophotovoltaic device are considered to predict the optimal performance of thermophotovoltaic device. The optimal region of power density, efficiency, and photon cut-off energy are determined. The obtained results show that the open-circuit voltage, short-circuit current density and efficiency of non-ideal device are lower than those of ideal device. The voltage output and photon cut-off energy of thermophotovoltaic device and heat source temperature can be optimized to improve the power density and efficiency of the device. It is found that the theoretical results are in good agreement with the experimental results, which can provide some guidances fordeveloping the practical thermophotovoltaic devices.
-
Keywords:
- thermophotovoltaic /
- detailed balance /
- thermodynamic limit /
- non-radiative recombination /
- optimal design
[1] 于海童, 刘东, 杨震, 段远源 2018 67 024209Google Scholar
Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar
[2] 吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 64 096102Google Scholar
Wu X L, Zhang D X Cai H K, Zhou Y, Ni J, Zhang J J 2015 Acta Phys. Sin. 64 096102Google Scholar
[3] Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar
[4] Corey M., Massoud K 2019 Appl. Phys. Rev. 6 021305Google Scholar
[5] Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar
[6] Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, et al. 2014 Nat. Nanotechnol. 9 126Google Scholar
[7] Datas A 2015 Sol. Energy Mater. Sol. Cells 134 275Google Scholar
[8] Tedah I A O, Maculewicz F, Wolf D E, Schmechel R 2019 J. Phys. D: Appl. Phys. 52 275501Google Scholar
[9] Hong Y, Otten M, Min M, Stephen K G, David P N 2019 Appl. Phys. Lett. 114 053901Google Scholar
[10] Burger T, Fan D, Lee K, Lenert A 2018 ACS Photonics 5 2748Google Scholar
[11] Song J, Lim M, Lee S S, Lee B J 2019 Phys. Rev. Appl. 11 044040Google Scholar
[12] Wang R Q, Lu J C, Jiang J H 2019 Phys. Rev. Applied 12 044038Google Scholar
[13] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotech. 13 806Google Scholar
[14] Liao T, Yang Z, Chen X, Chen J 2019 IEEE Transac. Electron Devices 66 1386Google Scholar
[15] Liao T, Zhang X, Chen X, Chen J 2019 J. Appl. Phys. 125 203103Google Scholar
[16] Liao T, Du J, Guo J, Chen X, Chen J 2019 J. Phys. D: Appl. Phys. 53 055503
[17] Datas A, Vaillon R 2019 Appl. Phys. Lett. 114 133501Google Scholar
[18] Datas A, Vaillon R 2019 Nano Energy 61 10Google Scholar
[19] Chubb D L, Good B S 2018 Sol. Energy 159 760Google Scholar
[20] 龙军华, 谭明, 季莲, 肖梦, 吴渊渊, 陆书龙, 代盼, 李雪飞, 金山, 邢志伟, 鲁姣, 杨文献 2018 中国科学: 物理学力学天文学 48 117301Google Scholar
Long J H, Tan M, Ji L, Xiao M, Wu Y Y, Lu S L, Dai P, Li X F, Jin S, Xing Z W, Lu J, Yang W X 2018 Sci. Sin.-Phys. Mech. Astron. 48 117301Google Scholar
[21] Liao T, Chen X, Yang Z, Lin B, Chen J 2016 Energy Conver. Manage. 126 205Google Scholar
[22] Chen K, Santhanam P, Sandhu S, Zhu L, Fan S 2015 Phys. Rev. B 91 134301Google Scholar
[23] Utlu Z 2019 Int. J. Low-Carbon Technologies https://doi.org/ 10.1093/ijlct/ctz049 [2019-12-1]
-
图 5 优化功率密度
${P_{{\rm{opt}}}}$ 和效率${\eta _{{\rm{opt}}}}$ 随光子截止能量${\varepsilon _{\rm{H}}}$ 变化的关系曲线图, 其中${T_{\rm{E}}} = 1500\, {\rm{K}}$ Figure 5. Optimal power density
${P_{{\rm{opt}}}}$ and efficiency${\eta _{{\rm{opt}}}}$ as a function of photons’ cut-off energy${\varepsilon _{\rm{H}}}$ , where${T_{\rm{E}}} = 1500\, {\rm{K}}.$ -
[1] 于海童, 刘东, 杨震, 段远源 2018 67 024209Google Scholar
Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar
[2] 吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 64 096102Google Scholar
Wu X L, Zhang D X Cai H K, Zhou Y, Ni J, Zhang J J 2015 Acta Phys. Sin. 64 096102Google Scholar
[3] Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar
[4] Corey M., Massoud K 2019 Appl. Phys. Rev. 6 021305Google Scholar
[5] Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar
[6] Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, et al. 2014 Nat. Nanotechnol. 9 126Google Scholar
[7] Datas A 2015 Sol. Energy Mater. Sol. Cells 134 275Google Scholar
[8] Tedah I A O, Maculewicz F, Wolf D E, Schmechel R 2019 J. Phys. D: Appl. Phys. 52 275501Google Scholar
[9] Hong Y, Otten M, Min M, Stephen K G, David P N 2019 Appl. Phys. Lett. 114 053901Google Scholar
[10] Burger T, Fan D, Lee K, Lenert A 2018 ACS Photonics 5 2748Google Scholar
[11] Song J, Lim M, Lee S S, Lee B J 2019 Phys. Rev. Appl. 11 044040Google Scholar
[12] Wang R Q, Lu J C, Jiang J H 2019 Phys. Rev. Applied 12 044038Google Scholar
[13] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotech. 13 806Google Scholar
[14] Liao T, Yang Z, Chen X, Chen J 2019 IEEE Transac. Electron Devices 66 1386Google Scholar
[15] Liao T, Zhang X, Chen X, Chen J 2019 J. Appl. Phys. 125 203103Google Scholar
[16] Liao T, Du J, Guo J, Chen X, Chen J 2019 J. Phys. D: Appl. Phys. 53 055503
[17] Datas A, Vaillon R 2019 Appl. Phys. Lett. 114 133501Google Scholar
[18] Datas A, Vaillon R 2019 Nano Energy 61 10Google Scholar
[19] Chubb D L, Good B S 2018 Sol. Energy 159 760Google Scholar
[20] 龙军华, 谭明, 季莲, 肖梦, 吴渊渊, 陆书龙, 代盼, 李雪飞, 金山, 邢志伟, 鲁姣, 杨文献 2018 中国科学: 物理学力学天文学 48 117301Google Scholar
Long J H, Tan M, Ji L, Xiao M, Wu Y Y, Lu S L, Dai P, Li X F, Jin S, Xing Z W, Lu J, Yang W X 2018 Sci. Sin.-Phys. Mech. Astron. 48 117301Google Scholar
[21] Liao T, Chen X, Yang Z, Lin B, Chen J 2016 Energy Conver. Manage. 126 205Google Scholar
[22] Chen K, Santhanam P, Sandhu S, Zhu L, Fan S 2015 Phys. Rev. B 91 134301Google Scholar
[23] Utlu Z 2019 Int. J. Low-Carbon Technologies https://doi.org/ 10.1093/ijlct/ctz049 [2019-12-1]
Catalog
Metrics
- Abstract views: 7118
- PDF Downloads: 104
- Cited By: 0