搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaSb/CdS薄膜热光伏电池的器件设计

吴限量 张德贤 蔡宏琨 周严 倪牮 张建军

引用本文:
Citation:

基于GaSb/CdS薄膜热光伏电池的器件设计

吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军

Device design of GaSb/CdS thin film thermal photovoltaic solar cells

Wu Xian-Liang, Zhang De-Xian, Cai Hong-Kun, Zhou Yan, Ni Jian, Zhang Jian-Jun
PDF
导出引用
  • 基于GaSb薄膜热光伏器件是降低热光伏系统成本的有效途径之一, 本文主要针对GaSb/CdS薄膜热光伏器件结构进行理论分析. 采用AFORS-HET软件进行模拟仿真, 分析GaSb和CdS两种材料各自的缺陷态密度、界面态对电池性能的影响. 根据软件模拟可以得知, 吸收层GaSb的缺陷态密度以及GaSb与CdS之间的界面态密度是影响电池性能的重要因素. 当GaSb缺陷态增加时, 主要影响电池的填充因子, 电池效率明显下降. 而作为窗口层的CdS缺陷态密度对电池性能影响不明显, 当CdS缺陷态密度上升4个数量级时, 电池效率仅下降0.11%.
    Enthusiasm in the reflearch of thermo-photovoltaic (TPV) cells has been aroused because the low bandwidth semiconductors of III-V family are coming into use. GaSb, as a member of III-V family, has many merits such as high absorption coefficient, and low band gap of 0.725 eV at 300 K etc.. At preflent thermo-photovoltaic cells are usually based on GaSb wafer, and it can be manufactured by the vertical Bridgeman method. Thermo-photovoltaic cell based on GaSb films is one of the effective ways to reduce the cost of the thermo-photovoltaic system. GaSb polycrystalline films can be grown by physical vapor deposition (PVD) which has advantages in using fewer materials and energy, and also in doing little harm to the environment. Because of residual acceptor defects VGaGaSb, GaSb thin film is usually of p-type semiconductor. So we should find n-type semiconductor material to form pn junction. We choose CdS as the emission layer of a cell structure. CdS belongs to n-type semiconductor with a narrow band gap of 2.4 eV and high light transmissivity. CdS thin film grown by chemical bath deposition (CBD) has passivation properties for GaSb. CdS layers can remove native oxides from GaSb surface and reduce the surface recombination velocity of GaSb. This paper focuses on theoretical analysis of GaSb/CdS thin film photovoltaic structure. By way of AFORS-HET simulation, we analyze the defect state density and interface density in GaSb and CdS, and their effects on cell performance. According to the simulation, the defect density in GaSb absorption layer is the very important factors that affect cell performance. When GaSb defect increases, the major factor to affect the cell is the fill factor that leads to low efficiency. On condition that thereflexists high GaSb defect density, the thickness of GaSb should be kept at 1000 nm. GaSb with a thickness above 1000 nm can bring about a high recombination rate, which reduces the efficiency of the cell. As an emission layer, the defect density in CdS should not affect the cell performance obviously. When the increase of CdS defect density is of four orders of magnitude, the cell efficiency is only decreased by 0.11%. In order to demonstrate the interface between GaSb and CdS, we use an inversion layer n-GaSb according to the passivation properties of CdS thin film grown on GaSb. When the defect density of inversion layer increases, the efficiency of the cell will decrease rapidly. And the GaSb/CdS structure will act as a resistance when the defect density in the inversion layer reaches 1020 cm-3. So the defect density in GaSb layer and the interface is the very factor to affect thermo-photovoltaic performance.
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号: 2011AA050513)、教育部留学回国人员科研启动基金和天津市教委项目(批准号: 20100314)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050513), the Ministry of Education Scientific Research Foundation for Returned Overseas Students, and the Tianjin Municipal Education Commission of China (Grant No. 20100314).
    [1]

    Cody G D 1980 Conference in the 4th NREL on the Thermo photovoltaic Generation of Electricity New York, America, August 17-20 1980 p58

    [2]

    Chen X, Han Y G, Li Q, Xuan Y M 2007 Study on characteristics of thermo photo voltaic system Advanced Technology of Electrical Engineering and Energy 26 41 (in Chinese) [陈雪, 韩玉阁, 李强, 宣益民 2007 热光伏系统基本特性研究 电工电能新技术 26 41]

    [3]

    Toyota H, Okabe A, Endoh T, Jinbo Y, Uchitomi N 2013 Journal of Crystal Growth 378 129

    [4]

    Stollwerck G, Sulima O V, Bett A W 2000 IEEE Trans Electron Devices 47 448

    [5]

    Bett A W, Sulima O V 2003 Semiconductor Science and Technology 18 184

    [6]

    Kunitsyna E V, L’vova T V 2010 Applied Surface Science 256 5644

    [7]

    Yang X D 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [杨兴典 2008 博士学位论文 (南京: 南京理工大学)]

    [8]

    Oladeji I O, Chow L, Liu J R 2000 Thin Solid Films 359 154

    [9]

    Li B, Feng L H, Zhang J G 2003 Journal of Semiconductors 24 837

    [10]

    Vigil G O, Ximello J N, Aguilar H J 2006 Semicond. Sci. Tchnol. 21 76

    [11]

    Fraas L M, Gee.J M, Emery K A 1990 IEEE Photovoltaic Specialist Conference New York, America, June 7-9 1990 p190

    [12]

    Chavan A, Chandola A, Sridaran 2006 Appl. Phys. 100 1

    [13]

    Hu H G, Wang Z, Sua B F 2004 Appl. Phys. 332 286

  • [1]

    Cody G D 1980 Conference in the 4th NREL on the Thermo photovoltaic Generation of Electricity New York, America, August 17-20 1980 p58

    [2]

    Chen X, Han Y G, Li Q, Xuan Y M 2007 Study on characteristics of thermo photo voltaic system Advanced Technology of Electrical Engineering and Energy 26 41 (in Chinese) [陈雪, 韩玉阁, 李强, 宣益民 2007 热光伏系统基本特性研究 电工电能新技术 26 41]

    [3]

    Toyota H, Okabe A, Endoh T, Jinbo Y, Uchitomi N 2013 Journal of Crystal Growth 378 129

    [4]

    Stollwerck G, Sulima O V, Bett A W 2000 IEEE Trans Electron Devices 47 448

    [5]

    Bett A W, Sulima O V 2003 Semiconductor Science and Technology 18 184

    [6]

    Kunitsyna E V, L’vova T V 2010 Applied Surface Science 256 5644

    [7]

    Yang X D 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [杨兴典 2008 博士学位论文 (南京: 南京理工大学)]

    [8]

    Oladeji I O, Chow L, Liu J R 2000 Thin Solid Films 359 154

    [9]

    Li B, Feng L H, Zhang J G 2003 Journal of Semiconductors 24 837

    [10]

    Vigil G O, Ximello J N, Aguilar H J 2006 Semicond. Sci. Tchnol. 21 76

    [11]

    Fraas L M, Gee.J M, Emery K A 1990 IEEE Photovoltaic Specialist Conference New York, America, June 7-9 1990 p190

    [12]

    Chavan A, Chandola A, Sridaran 2006 Appl. Phys. 100 1

    [13]

    Hu H G, Wang Z, Sua B F 2004 Appl. Phys. 332 286

  • [1] 熊家骋, 黄哲群, 张恒, 王启祥, 崔可航. 热光伏器件中的光谱调控.  , 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [2] 刘慧桢, 刘蓓, 董家斌, 李建鹏, 曹子修, 刘越, 孟汝涛, 张毅. 不同环境下硫化镉/铜基薄膜异质结退火对太阳电池性能调控.  , 2023, 72(8): 088802. doi: 10.7498/aps.72.20230105
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测.  , 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱.  , 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [5] 范巍, 曾雉. 四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料.  , 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [6] 薛丁江, 石杭杰, 唐江. 新型硒化锑材料及其光伏器件研究进展.  , 2015, 64(3): 038406. doi: 10.7498/aps.64.038406
    [7] 江天, 程湘爱, 许中杰, 陆启生. 光伏型碲镉汞探测器在波段内连续激光辐照下的两种不同过饱和现象的产生机理.  , 2013, 62(9): 097303. doi: 10.7498/aps.62.097303
    [8] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [9] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性.  , 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [10] 江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生. 光伏碲镉汞探测器在波段内连续激光辐照下的非线性响应机理研究.  , 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [11] 张姗, 胡晓宁. Si基碲镉汞光伏探测器的深能级研究.  , 2011, 60(6): 068502. doi: 10.7498/aps.60.068502
    [12] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究.  , 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [13] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究.  , 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [14] 马海明, 李富铭. 砷化镓中微微秒光脉冲的自透射.  , 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
    [15] 徐鸿达, 林兰英. 锑化铟的热处理.  , 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [16] 林蘭英, 徐鸿达. 锑化铟的机械损伤.  , 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [17] 萧楠, 刘益焕. 锗、硅、锑化铟和砷化镓的热膨涨——用X射线衍射法测量.  , 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [18] 徐声, 李平. 三硫化二锑多晶薄膜的光电导性.  , 1962, 18(5): 254-258. doi: 10.7498/aps.18.254
    [19] 汤定元. 关于硫化镉单晶的生长速率.  , 1962, 18(4): 207-210. doi: 10.7498/aps.18.207
    [20] 赵广增;徐世秋;王传珏. 硫化镉单晶体本征吸收边的类氢光谱系.  , 1956, 12(3): 187-194. doi: 10.7498/aps.12.187
计量
  • 文章访问数:  6727
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-13
  • 修回日期:  2014-12-02
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map