搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光法测定半导体禁带宽度

时凯居 李睿 李长富 王成新 徐现刚 冀子武

引用本文:
Citation:

荧光法测定半导体禁带宽度

时凯居, 李睿, 李长富, 王成新, 徐现刚, 冀子武

Luminescence measurement of band gap

Shi Kai-Ju, Li Rui, Li Chang-Fu, Wang Cheng-Xin, Xu Xian-Gang, Ji Zi-Wu
PDF
HTML
导出引用
  • 光学带隙或禁带宽度是半导体材料的一个重要特征参数. 本文以3个具有代表性的InGaN/GaN多量子阱结构作为研究对象, 深入探讨了荧光法测定某个目标温度下InGaN阱层的光学带隙所需要满足的测试条件. 由于InGaN阱层是一种多元合金且受到来自GaN垒层的应力作用, 所以该阱层中不仅存在着杂质/缺陷相关的非辐射中心, 也存在着组分起伏诱发的局域势起伏以及极化场诱发的量子限制斯塔克效应. 因此, 为了获得目标温度下InGaN阱层的较为精确的光学带隙, 提出了荧光测量至少应满足的测试条件, 即必须消除该目标温度下非辐射中心、局域中心以及量子限制斯塔克效应对辐射过程的影响.
    Optical band gap or band gap is an important characteristic parameter of semiconductor materials. In this study, several representative InGaN/GaN multiple quantum well structures are taken as the research objects, and the test conditions that need to be met for the luminescence measurement of the optical band gap of the InGaN well layer at a certain target temperature are discussed in depth. Since the InGaN well layer is a multi-element alloy and is subjected to stress from the GaN barrier layer, there exist not only impurity/defect-related non-radiation centers in the well layer, but also localized potential fluctuation induced by composition fluctuation and quantum confinement Stark effect (QCSE) induced by polarization field. Therefore, in order to obtain a more accurate optical band gap of the InGaN well layer, we propose the following test conditions that the luminescence measurement should meet at least, that is, the influence of the non-radiation centers, the localized centers and the QCSE on the emission process at the target temperature must be eliminated. Although these test conditions need to be further improved, it is expected that this test method can provide valuable guidance or ideas for measuring the semiconductor optical band gap.
      通信作者: 冀子武, jiziwu@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872167, 51672163)资助的课题.
      Corresponding author: Ji Zi-Wu, jiziwu@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872167, 51672163).
    [1]

    Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447Google Scholar

    [2]

    Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411Google Scholar

    [3]

    Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [4]

    Ghobadi N 2013 Int. Nano Lett. 3 2Google Scholar

    [5]

    Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163Google Scholar

    [6]

    Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130Google Scholar

    [7]

    Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538Google Scholar

    [8]

    Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610Google Scholar

    [9]

    Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615Google Scholar

    [10]

    Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042Google Scholar

    [11]

    Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519Google Scholar

    [12]

    Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57Google Scholar

    [13]

    Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453

    [14]

    Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560

    [15]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691Google Scholar

    [16]

    Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901

    [17]

    De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304Google Scholar

    [18]

    Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250Google Scholar

    [19]

    Cho C Y, Park S J 2016 Opt. Express 24 7488Google Scholar

    [20]

    Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176Google Scholar

    [21]

    Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525Google Scholar

    [22]

    Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503Google Scholar

    [23]

    Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871Google Scholar

    [24]

    Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129Google Scholar

    [25]

    Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523Google Scholar

    [26]

    Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301Google Scholar

    [27]

    Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932Google Scholar

    [28]

    Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143Google Scholar

    [29]

    Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803Google Scholar

    [30]

    Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508

    [31]

    Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2Google Scholar

    [32]

    Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116

    [33]

    Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090Google Scholar

    [34]

    Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1Google Scholar

    [35]

    Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801Google Scholar

  • 图 1  样品结构示意图

    Fig. 1.  Schematic diagrams of samples.

    图 2  注入电流为5 µA时, SG1的EL峰位能量和半高全宽(FWHM)的温度依赖性. 插图为5 µA时SB的EL峰位能量和FWHM的温度依赖性

    Fig. 2.  Temperature dependence of the EL peak energy and FWHM for SG1 measured at 5 µA. The inset is that for SB measured at 5 µA.

    图 3  注入电流为0.001 mA (a), 0.2 mA (b), 0.5 mA (c), 2 mA (d), 5 mA (e)和350 mA (f)时SG2的EL峰位能量和FWHM的温度依赖性

    Fig. 3.  Temperature dependences of the EL peak energy and FWHM for SG2 measured at 0.001 mA (a), 0.2 mA (b), 0.5 mA (c), 2 mA (d), 5 mA (e), and 350 mA (f).

    图 4  注入电流为0.01 mA (a), 5 mA (b)和200 mA (c)时SB的EL峰位能量和FWHM的温度依赖性(虚线代表Varshni曲线)

    Fig. 4.  Temperature dependences of the EL peak energy and FWHM for SB measured at 0.01 mA (a), 5 mA (b), and 200 mA (c). The dashed lines represent Varshni curves.

    图 5  温度为300 K时SB的EL峰位能量和FWHM的注入电流依赖性

    Fig. 5.  EL peak energy and FWHM as a function of injection current for SB at 300 K.

    表 1  样品的具体参数

    Table 1.  Specific parameters of samples.

    样品衬底成核层阱/垒厚度/nmIn组分/%文献
    SG1SiAlN2 / 1426[23]
    SG2SiAlN2 / 1432[24]
    SBAl2O3GaN2 / 1015[25, 26]
    下载: 导出CSV
    Baidu
  • [1]

    Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447Google Scholar

    [2]

    Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411Google Scholar

    [3]

    Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [4]

    Ghobadi N 2013 Int. Nano Lett. 3 2Google Scholar

    [5]

    Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163Google Scholar

    [6]

    Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130Google Scholar

    [7]

    Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538Google Scholar

    [8]

    Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610Google Scholar

    [9]

    Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615Google Scholar

    [10]

    Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042Google Scholar

    [11]

    Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519Google Scholar

    [12]

    Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57Google Scholar

    [13]

    Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453

    [14]

    Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560

    [15]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691Google Scholar

    [16]

    Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901

    [17]

    De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304Google Scholar

    [18]

    Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250Google Scholar

    [19]

    Cho C Y, Park S J 2016 Opt. Express 24 7488Google Scholar

    [20]

    Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176Google Scholar

    [21]

    Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525Google Scholar

    [22]

    Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503Google Scholar

    [23]

    Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871Google Scholar

    [24]

    Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129Google Scholar

    [25]

    Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523Google Scholar

    [26]

    Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301Google Scholar

    [27]

    Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932Google Scholar

    [28]

    Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143Google Scholar

    [29]

    Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803Google Scholar

    [30]

    Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508

    [31]

    Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2Google Scholar

    [32]

    Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116

    [33]

    Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090Google Scholar

    [34]

    Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1Google Scholar

    [35]

    Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801Google Scholar

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响.  , 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 孟婧, 高博文. 基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化.  , 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [3] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布.  , 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [4] 朱陆尧, 王鹏, 翟春光, 胡阔, 姚明光, 刘冰冰. 酞菁晶体结构与荧光性质的压力调控.  , 2019, 68(17): 176101. doi: 10.7498/aps.68.20190559
    [5] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究.  , 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [6] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响.  , 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [7] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [8] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜.  , 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [9] 李占龙, 陆国会, 孙成林, 门志伟, 里佐威, 高淑琴. 四磺酸基苯基卟啉荧光增强苯的高阶受激拉曼散射.  , 2011, 60(8): 084211. doi: 10.7498/aps.60.084211
    [10] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率.  , 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [11] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能.  , 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [12] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究.  , 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [13] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙.  , 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [14] 蒋爱华, 肖剑荣, 王德安. 退火对含氮氟非晶碳膜结构及光学带隙的影响.  , 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [15] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响.  , 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [16] 肖剑荣, 徐 慧, 李燕峰, 李明君. 氮分压对氮化铜薄膜结构及光学带隙的影响.  , 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [17] 王防震, 陈张海, 柏利慧, 黄少华, 沈学础. CdSe/ZnSe异质结构中Zn1-xCdxSe量子岛(点)的显微荧光光谱和显微拉曼光谱研究.  , 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [18] 梁海春, 容敏智, 章明秋, 曾汉民. 微乳液法制备纳米银粒子的结构及其荧光现象研究.  , 2002, 51(1): 49-54. doi: 10.7498/aps.51.49
    [19] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联.  , 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [20] 叶超, 宁兆元, 程珊华, 王响英. 氟化非晶碳薄膜的光学带隙分析.  , 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
计量
  • 文章访问数:  8077
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-11-26
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回
Baidu
map