Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss

Wang Fang Zhang Long Ma Tao Wang Xu Liu Yu-Fang Ma Chun-wang

Citation:

A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss

Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A symmetrical wedge-to-wedge THz hybrid SPPs waveguide (WWTHSW) with low propagation loss is investigated. The WWTHSW consists of two identical dielectric wedge waveguides symmetrically placed on each side of a micro wedge-patterned thin metal film. The mode characteristics of the WWTHSW, such as the propagation length (Lp), the normalized effective mode area (A) and the figure of merit (FOM) are analyzed by using the finite element method (FEM). Firstly, the influences of the height of Si micro wedge waveguide (H) and the gap between two wedges (g) on Lp and A are studied. For the same g, A first decreases and then increases with the increase of H. A achieves a minimum at an H of ~40 μm. However, Lp monotonically increases as H increases. The change of Lp slows down when H is greater than 40 μm. At a fixed H, Lp slightly increases with the increase of g. But A achieves a minimum when g is ~50 nm. Secondly, the dependencies of the mode characteristics of the WWTHSW on Si wedge tip angle (α) and Ag wedge tip angle (θ) are analyzed. At a fixed α, θ has less effect on Lp and A. As α increases at a fixed θ, Lp increases monotonically but A decreases firstly and then increases. A reaches a minimum when α increases to ~100°. Then, the change of Lp and A with the thicknesses of Ag film (d) and Ag wedge (h) are demonstrated. At a fixed h, both Lp and A slightly decrease as d increases. For the same d, Lp and A decrease with the increase of h. A for h = 0 μm is distinctly larger than those for h = 2 μm and h = 5 μm. According to the above optimizations, the parameters of the WWTHSW are chosen as d = 100 nm, g = 50 nm, h = 2 μm, θ = 80°, α = 100°, H = 40 μm. Under the optimal parameters, Lp of ~51 mm is obtained when Am reaches ~λ2/10280. Compared with the previous hybrid THz plasmonic waveguide, Lp of the WWTHSW increases by 3 times, and A decreases by an order of magnitude. This result reveals that the WWTHSW enables low-loss propagation and ultra-deep-subwavelength mode confinement at THz frequencies. At last, the coupling property of the parallel WWTHSW is investigated. The coupling length of ~8958 μm is achieved without the crosstalk between two parallel waveguides. By comparison, the WWTHSW has more advantages in terms of transmission and coupling characteristics than the previous micro wedge waveguide structure and bow-tie waveguide structure. In summary, due to the excellent transmission and coupling characteristics, the WWTHSW has great potential in the fields of optical force in trapping, biomolecules transporting, and in high-density integrated circuits design.
      Corresponding author: Ma Tao, matao_bupt79@163.com
    [1]

    Andersen J, Solodukhov V 1978 IEEE T. Antenn. Propag. 26 598Google Scholar

    [2]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X J 2008 Nature Photon. 2 496Google Scholar

    [3]

    Li Qing, Pan D, Wei H, Xu H X 2018 Nano Lett. 18 2009Google Scholar

    [4]

    Bozhevolnyi S I, Volkov V S, Devaux, E, Laluet, J Y, Ebbesen, T W 2006 Nature 440 508Google Scholar

    [5]

    Zhu Z H, Garcia-Ortiz C E, Han Z H, Radko I P, Bozhevolnyi S I 2013 Appl. Phys. Lett. 103 061108

    [6]

    Hassan K, Leroy F, Colas-Des-Francs G, Weeber, J C 2014 Opt. Lett. 39 697Google Scholar

    [7]

    Papaioannou S, Giannoulis G, Vyrsokinos K, Leroy F, Zacharatos F, Markey L, Weeber C J, Dereux A, Bozhevolnyi S, Prinzen A, Apostolopoulos D, Avramopoulos H, Pleros N 2015 IEEE Photon. Technol. Lett. 27 963Google Scholar

    [8]

    Hui F, Berini P 2016 J. Lightwave Technol. 34 2631Google Scholar

    [9]

    涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

    [10]

    Wang Y L, Li S L, Yan J Y, Li C, Jiang P, Wang L L, Yu L 2019 Nanophotonics 8 1271Google Scholar

    [11]

    Wang Y L, Li C, Duan G Y, Wang L L, Yu L 2019 Adv. Opt. Mater. 7 1801362Google Scholar

    [12]

    Mai W, Wang Y, Zhang Y, Cui L, Yu L 2017 Chin. Phys. Lett. 34 024204Google Scholar

    [13]

    Gosciniak J, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Opt. Express 18 5314Google Scholar

    [14]

    Berini P 2009 Adv. Opt. Photonic 1 484Google Scholar

    [15]

    Ma Y Q, Gerald F, Yuliya S, Wu Q 2014 Opt. Lett. 39 973Google Scholar

    [16]

    Pan M Y, Lin E H, Wang L, Wei P K 2014 Appl. Phys. A. 115 592

    [17]

    Ma Y Q, Farrell G, Semenova Y, Wu Q 2015 J. Lightwave Technol. 33 3827Google Scholar

    [18]

    贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 60 057301Google Scholar

    Jia Z X, Du X, Lü T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301Google Scholar

    [19]

    Gong Q, Bian Y 2014 J. Lightwave Technol. 32 4504Google Scholar

    [20]

    Jacek G, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Optics Express 18 5314

    [21]

    彭滟, 施辰君, 朱亦鸣, 庄松林 2019 中国激光 46 0614002Google Scholar

    Peng Y, Shi C J, Zhu Y M, Zhuang S L 2019 Chin. J. Las. 46 0614002Google Scholar

    [22]

    陈华, 汪力 2009 58 4605Google Scholar

    Chen H, Wang L 2009 Acta Phys. Sin. 58 4605Google Scholar

    [23]

    Eldlio M, Ma Y Q, Maeda H, Cada M 2017 Infrared Phys. Technol. 80 93Google Scholar

    [24]

    Cao W, Song C Y, Lanier T E, Singh R, O’Hara J F, Dennis W M, Zhao Y P, Zhang W L 2013 Sci. Rep. 3 1766Google Scholar

    [25]

    Fitch M J, Osiander R 2004 J. Hopkins Apl. Technol. D. 25 348

    [26]

    Berini P 2006 Opt. Express 14 13030Google Scholar

    [27]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, García-Vidal F J 2008 Phys. Rev. Lett. 100 023901Google Scholar

    [28]

    Ma Y Q, Farrell G, Semenova Y, Chan H P, Zhang H Z, Wu Q 2013 Plasmonics 8 1259Google Scholar

    [29]

    Georgios V, Shanhui F 2008 Opt. Express 16 2129Google Scholar

  • 图 1  WWTHSW示意图 (a)三维图; (b)截面图

    Figure 1.  Schematic diagram of the proposed WWTHSW: (a) 3D diagram; (b) cross-section.

    图 2  不同Hg时, WWTHSW的模式分析 (a) MC, (b) Lp, (c) A; 模场分布: (d) [H, g] = [10, 0.05] μm, (e) [H, g] = [40, 0.05] μm, (f) [H, g] = [90, 0.05] μm

    Figure 2.  Modes analysis of the WWTHSW with different H and g: (a) MC, (b) Lp, and (c) A;and normalized EM energy density distributions: (d) [H, g] = [10, 0.05] μm; (e) [H, g] = [40, 0.05] μm; (f) [H, g] = [90, 0.05] μm.

    图 3  不同αθ时, WWTHSW的模式分析 (a) Lp, (b) A; (c)模场分布随α的变化(θ = 80°); (d)模场分布随θ的变化(α = 100°)

    Figure 3.  Modes analysis of the WWTHSW with different α and θ, (a) Lp, (b) A; and normalized EM energy density distributions: (c) with different α at a fixed θ of 80°, (d) with different θ at a fixed α of 100°.

    图 4  不同dh时, WWTHSW的模式分析 (a) Lp、(b) A; (c)沿x方向的归一化能量密度

    Figure 4.  Modes analysis of the WWTHSW with different d and h, (a) Lp, (b) A, and (c) normalized EM energy density.

    图 5  不同波导性能比较 (a) WWTHSW, HTMWSPPs和HTBTSPPs波导的截面图; (b) WWTHSW, HTMWSPPs和HTBTSPPs波导的ALp关系图; (c)品质因数

    Figure 5.  Performance comparison of the WWTHSW, HTMWSPPs and HTBTSPPs wavguide: (a) cross-section views; (b) the relationship between A and Lp; and (c) FOM with different parameters.

    图 6  波导耦合特性分析 (a)平行波导三维结构示意图; (b)耦合长度随D的变化; (c)最大传输功率随D的变化

    Figure 6.  Coupling characteristic of waveguides: (a) schematic diagram parallel waveguides; (b) Lc versus the separation between the two waveguides; (c) the maximum transfer power (Pmax) as a function of distance D.

    Baidu
  • [1]

    Andersen J, Solodukhov V 1978 IEEE T. Antenn. Propag. 26 598Google Scholar

    [2]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X J 2008 Nature Photon. 2 496Google Scholar

    [3]

    Li Qing, Pan D, Wei H, Xu H X 2018 Nano Lett. 18 2009Google Scholar

    [4]

    Bozhevolnyi S I, Volkov V S, Devaux, E, Laluet, J Y, Ebbesen, T W 2006 Nature 440 508Google Scholar

    [5]

    Zhu Z H, Garcia-Ortiz C E, Han Z H, Radko I P, Bozhevolnyi S I 2013 Appl. Phys. Lett. 103 061108

    [6]

    Hassan K, Leroy F, Colas-Des-Francs G, Weeber, J C 2014 Opt. Lett. 39 697Google Scholar

    [7]

    Papaioannou S, Giannoulis G, Vyrsokinos K, Leroy F, Zacharatos F, Markey L, Weeber C J, Dereux A, Bozhevolnyi S, Prinzen A, Apostolopoulos D, Avramopoulos H, Pleros N 2015 IEEE Photon. Technol. Lett. 27 963Google Scholar

    [8]

    Hui F, Berini P 2016 J. Lightwave Technol. 34 2631Google Scholar

    [9]

    涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

    [10]

    Wang Y L, Li S L, Yan J Y, Li C, Jiang P, Wang L L, Yu L 2019 Nanophotonics 8 1271Google Scholar

    [11]

    Wang Y L, Li C, Duan G Y, Wang L L, Yu L 2019 Adv. Opt. Mater. 7 1801362Google Scholar

    [12]

    Mai W, Wang Y, Zhang Y, Cui L, Yu L 2017 Chin. Phys. Lett. 34 024204Google Scholar

    [13]

    Gosciniak J, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Opt. Express 18 5314Google Scholar

    [14]

    Berini P 2009 Adv. Opt. Photonic 1 484Google Scholar

    [15]

    Ma Y Q, Gerald F, Yuliya S, Wu Q 2014 Opt. Lett. 39 973Google Scholar

    [16]

    Pan M Y, Lin E H, Wang L, Wei P K 2014 Appl. Phys. A. 115 592

    [17]

    Ma Y Q, Farrell G, Semenova Y, Wu Q 2015 J. Lightwave Technol. 33 3827Google Scholar

    [18]

    贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 60 057301Google Scholar

    Jia Z X, Du X, Lü T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301Google Scholar

    [19]

    Gong Q, Bian Y 2014 J. Lightwave Technol. 32 4504Google Scholar

    [20]

    Jacek G, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Optics Express 18 5314

    [21]

    彭滟, 施辰君, 朱亦鸣, 庄松林 2019 中国激光 46 0614002Google Scholar

    Peng Y, Shi C J, Zhu Y M, Zhuang S L 2019 Chin. J. Las. 46 0614002Google Scholar

    [22]

    陈华, 汪力 2009 58 4605Google Scholar

    Chen H, Wang L 2009 Acta Phys. Sin. 58 4605Google Scholar

    [23]

    Eldlio M, Ma Y Q, Maeda H, Cada M 2017 Infrared Phys. Technol. 80 93Google Scholar

    [24]

    Cao W, Song C Y, Lanier T E, Singh R, O’Hara J F, Dennis W M, Zhao Y P, Zhang W L 2013 Sci. Rep. 3 1766Google Scholar

    [25]

    Fitch M J, Osiander R 2004 J. Hopkins Apl. Technol. D. 25 348

    [26]

    Berini P 2006 Opt. Express 14 13030Google Scholar

    [27]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, García-Vidal F J 2008 Phys. Rev. Lett. 100 023901Google Scholar

    [28]

    Ma Y Q, Farrell G, Semenova Y, Chan H P, Zhang H Z, Wu Q 2013 Plasmonics 8 1259Google Scholar

    [29]

    Georgios V, Shanhui F 2008 Opt. Express 16 2129Google Scholar

Metrics
  • Abstract views:  8546
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2019
  • Accepted Date:  24 December 2019
  • Published Online:  05 April 2020

/

返回文章
返回
Baidu
map