搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

THz电磁波在时变非磁化等离子体中的传播特性研究

陈文波 龚学余 邓贤君 冯军 黄国玉

引用本文:
Citation:

THz电磁波在时变非磁化等离子体中的传播特性研究

陈文波, 龚学余, 邓贤君, 冯军, 黄国玉

Propagation characteristics of THz electromagnetic waves in time varying un-magnetized plasma

Chen Wen-Bo, Gong Xue-Yu, Deng Xian-Jun, Feng Jun, Huang Guo-Yu
PDF
导出引用
  • 本文建立了时变非磁化等离子体平板的一维模型,并采用时域有限差分(FDTD)方法对太赫兹(THz)电磁波在时变等离子体中传播时的反射、透射系数及吸收率进行了计算. 然后根据计算结果分析了时变等离子体的上升时间、电子密度、温度以及等离子体平板厚度等参数对不同频段THz波在等离子体中传播特性的影响. 分析结果表明:THz 波在时变等离子体中传播时,其反射系数受等离子体电子密度和上升时间的影响较大;而吸收率则随着上升时间的减小、电子密度及平板厚度的增加而增大;此外,THz电磁波能够穿透量级为1020 m-3的高密度等离子体层,可以作为再入段飞行器通信以及高密度等离子体诊断的理想工具.
    This paper has built the one-dimensional model of the time-varying un-magnetized plasma, and the finite different time domain (FDTD) algorithm is used to calculate the reflection and transmission coefficients, as well as the absorption rate of terahertz (THz) electromagnetic waves in time-varying plasma. The relation between the frequency of the THz wave and the propagation characteristic influenced by rise time, electron density, temperature, and depth of time-varying plasma plate is analyzed. Results demonstrate that the reflection coefficient is mainly influenced by plasma rise time and electron density. The absorption rate increases with decreasing rise time, increasing depth and electron density. Furthermore, the THz electromagnetic wave is an effective tool for the communication of reentry vehicle and high density plasma diagnosis because of its strong penetrability in high density plasma.
    • 基金项目: 国家自然科学基金(批准号:11375085)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375085).
    [1]

    Wang F, Wei B 2013 Acta Phys. Sin. 62 044101(in Chinese) [王飞, 魏兵 2013 62 044101]

    [2]

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101(in Chinese) [杨利霞, 沈丹华, 施卫东 2013 62 104101]

    [3]

    Ying X, Zhao Z W, Zhang H, Sun S J 2012 Chin. J. Of Radio. Sci. 27 354(in Chinese) [殷雄, 赵振维, 张厚, 孙树计 2012 电波科学学报 27 354]

    [4]

    Xie K, Li X P, Yang M, Shi L, Liu D L 2012 J. of Astr. 34 1116(in Chinese) [谢楷, 李小平, 杨敏, 石磊, 刘东林 2012 宇航学报 34 1116]

    [5]

    Shi L, Guo B L, Liu Y M, Li J T 2012 Prog. In EM. Res. 123 321

    [6]

    Li J T, Guo L X, Jing S S, Fang Q J 2011 Chin. J. Of Radio. Sci. 26 494(in Chinese) [李江挺, 郭立新, 金莎莎, 方全杰 2011 电波科学学报 26 494]

    [7]

    Cui P Y, Dou Q, Gao A 2012 J. of Astr. 35 01(in Chinese) [崔平远, 窦强, 高艾 2012 宇航学报 35 01]

    [8]

    Sun C Q, Gao Y, Yang D M 2013 Chin. J. of Vacuum. Sci. & Tech. 33 1209(in Chinese) [孙成琪, 高阳, 杨德明 2013 真空科学与技术学报 33 1209]

    [9]

    Wu S Q, Liu J S, Wan SH L, Hu B 2013 Las. & Infra. 43 1325(in Chinese) [吴四清, 刘劲松, 汪盛烈, 胡兵 2013 激光与红外 43 1325]

    [10]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [11]

    S. P. Jamison, J. L. Shen, D. R. Jones, R. C. Issac, B. Ersfeld 2003 J. Appl. Phys. 93 4334

    [12]

    S. Ebbinghaus, K. Schröck, J. C. Schauer 2006 Plasma Sources Sci. Technol. 15 72

    [13]

    Siegrist M R, Bindslev H, Brazis R, Guyomarc’h D, Hogge J P, Moreau P, Raguotis R 1999 Infrared Phys. Technol. 40 247

    [14]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2010 Nucl. Instrum. Meth. B 269 23

    [15]

    Yuan CH X, Zhou ZH X, Xiang X L, Sun H G 2010 Trans. Plasma Sci. 38 3348

    [16]

    Xi Y B, L Y 2012 Plasma Sci. & Technol. 14 05

    [17]

    Xi Y B, L Y 2013 Vacuum 88 160

    [18]

    Liu S B, Z T, Liu M L, H W 2008 Syst. Engineer. Electron. 19 1520

    [19]

    Liu Y, Deng L, Yang Z Z, Duan Y F 2013 Nat. Sci. J. of Xiangtan Univ. 35 33 (in Chinese) [刘洋, 邓磊, 杨植宗, 段永法 2013 湘潭大学自然科学学报 35 33]

    [20]

    Liu S B, Liu S, HONG W 2010 The finite difference time domain method of the dispersion medium (Beijing: Science Press) pp248-258 (in Chinese) [刘少斌, 刘崧, 洪伟2010色散介质时域有限差分方法(北京: 科学出版社)第248–258页]

    [21]

    Zheng L, Zhao Q, Liu X Z, Xing X J 2012 Acta Phys. Sin. 61 245202(in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 61 245202]

  • [1]

    Wang F, Wei B 2013 Acta Phys. Sin. 62 044101(in Chinese) [王飞, 魏兵 2013 62 044101]

    [2]

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101(in Chinese) [杨利霞, 沈丹华, 施卫东 2013 62 104101]

    [3]

    Ying X, Zhao Z W, Zhang H, Sun S J 2012 Chin. J. Of Radio. Sci. 27 354(in Chinese) [殷雄, 赵振维, 张厚, 孙树计 2012 电波科学学报 27 354]

    [4]

    Xie K, Li X P, Yang M, Shi L, Liu D L 2012 J. of Astr. 34 1116(in Chinese) [谢楷, 李小平, 杨敏, 石磊, 刘东林 2012 宇航学报 34 1116]

    [5]

    Shi L, Guo B L, Liu Y M, Li J T 2012 Prog. In EM. Res. 123 321

    [6]

    Li J T, Guo L X, Jing S S, Fang Q J 2011 Chin. J. Of Radio. Sci. 26 494(in Chinese) [李江挺, 郭立新, 金莎莎, 方全杰 2011 电波科学学报 26 494]

    [7]

    Cui P Y, Dou Q, Gao A 2012 J. of Astr. 35 01(in Chinese) [崔平远, 窦强, 高艾 2012 宇航学报 35 01]

    [8]

    Sun C Q, Gao Y, Yang D M 2013 Chin. J. of Vacuum. Sci. & Tech. 33 1209(in Chinese) [孙成琪, 高阳, 杨德明 2013 真空科学与技术学报 33 1209]

    [9]

    Wu S Q, Liu J S, Wan SH L, Hu B 2013 Las. & Infra. 43 1325(in Chinese) [吴四清, 刘劲松, 汪盛烈, 胡兵 2013 激光与红外 43 1325]

    [10]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [11]

    S. P. Jamison, J. L. Shen, D. R. Jones, R. C. Issac, B. Ersfeld 2003 J. Appl. Phys. 93 4334

    [12]

    S. Ebbinghaus, K. Schröck, J. C. Schauer 2006 Plasma Sources Sci. Technol. 15 72

    [13]

    Siegrist M R, Bindslev H, Brazis R, Guyomarc’h D, Hogge J P, Moreau P, Raguotis R 1999 Infrared Phys. Technol. 40 247

    [14]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2010 Nucl. Instrum. Meth. B 269 23

    [15]

    Yuan CH X, Zhou ZH X, Xiang X L, Sun H G 2010 Trans. Plasma Sci. 38 3348

    [16]

    Xi Y B, L Y 2012 Plasma Sci. & Technol. 14 05

    [17]

    Xi Y B, L Y 2013 Vacuum 88 160

    [18]

    Liu S B, Z T, Liu M L, H W 2008 Syst. Engineer. Electron. 19 1520

    [19]

    Liu Y, Deng L, Yang Z Z, Duan Y F 2013 Nat. Sci. J. of Xiangtan Univ. 35 33 (in Chinese) [刘洋, 邓磊, 杨植宗, 段永法 2013 湘潭大学自然科学学报 35 33]

    [20]

    Liu S B, Liu S, HONG W 2010 The finite difference time domain method of the dispersion medium (Beijing: Science Press) pp248-258 (in Chinese) [刘少斌, 刘崧, 洪伟2010色散介质时域有限差分方法(北京: 科学出版社)第248–258页]

    [21]

    Zheng L, Zhao Q, Liu X Z, Xing X J 2012 Acta Phys. Sin. 61 245202(in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 61 245202]

  • [1] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性.  , 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [2] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导.  , 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [3] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [4] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [5] 王娟娟, 黄志祥, 方明, 张亚光, 吴先良. 一种新型介质结构的超传输电磁特性研究.  , 2015, 64(11): 110201. doi: 10.7498/aps.64.110201
    [6] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析.  , 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [9] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [10] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [11] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究.  , 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
    [12] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响.  , 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [13] 蓝朝晖, 胡希伟, 江中和, 刘明海. 装置参数对狭缝天线激发的等离子体表面波传播的影响.  , 2010, 59(6): 4093-4099. doi: 10.7498/aps.59.4093
    [14] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究.  , 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [15] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法.  , 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [16] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟.  , 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [17] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟.  , 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [18] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析.  , 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [19] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性.  , 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] 王喜庆, 吕百达. 贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输.  , 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
计量
  • 文章访问数:  6405
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-04-23
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map