搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性

王芳 陈亚珂 李传强 马涛 卢颖慧 刘恒 金婵

引用本文:
Citation:

非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性

王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵

Porous silicon - calcium fluoride plasma waveguide with asymmetric Ag film and its sensitivity characteristics

Wang Fang, Chen Ya-Ke, Li Chuan-Qiang, Ma Tao, Lu Ying-Hui, Liu Heng, Jin Chan
PDF
HTML
导出引用
  • 本文研究了一种非对称银膜多孔硅-氟化钙混合等离子体波导, 并对其模式特性和波导灵敏度进行了分析. 利用有限元方法分析了波导中两个不同偏振态基模(PM 1和PM 2)的有效折射率、传输损耗、归一化有效模场面积、品质因数和波导灵敏度, 并对几何参数进行优化. 结果表明, 在中红外波长3.5 μm附近, 非对称银膜多孔硅-氟化钙混合等离子体波导具有良好的模场约束能力和低损耗特性; 此时, PM 1和PM 2的归一化有效模场面积分别为0.30和0.52, 传输损耗分别为0.019 dB/μm和0.016 dB/μm, 品质因数分别为1335.54和1594.99, 波导灵敏度分别为0.080和0.064. 通过制造容差分析可知, 非对称银膜多孔硅-氟化钙混合等离子波导在 ± 10 nm的制造容差范围内保持了良好的模式特性和传感特性. 非对称银膜多孔硅-氟化钙混合等离子体波导结构简单, 损耗小, 易于实现表面等离子体传感, 为无标记生物化学传感提供了一种可行的方案, 另外, 波导的非对称结构也可用于模式偏振态变换.
    In this paper, a porous silicon-calcium fluoride hybrid plasmonic waveguide (PS-CaF2 HPW) with an asymmetric silver film is studied. The PS-CaF2 HPW is composed of a PS strip waveguide deposited with asymmetric CaF2 and Ag thin film layers on an SiO2 substrate. In the mid-infrared (MIR) region, the mode characteristics and waveguide sensitivity of the mode in the PS-CaF2 HPW are simulated by using the finite element method (FEM). The results show that there are two fundamental modes (PM 1 and PM 2) with different polarization states in the PS-CaF2 HPW. The real part of the effective refractive index (Re(neff)), transmission loss (α), normalized effective mode field area (A), quality factor (FOM) and sensitivity (Swg) for each of the PM 1 and the PM 2 are studied and optimized. Moreover, the effect of temperature on the performances of the PS-CaF2 HPW is also analyzed. Firstly, the mode field distributions calculated by the FEM indicate that the mode field energy for each of the PM 1 and PM 2 in the PS-CaF2 HPW is mostly restricted to the PS layer and CaF2 layer. Comparing with conventional dielectric waveguides, the mode field energy of the PS-CaF2 HPW is well confined in the PS layer and CaF2 layer. The geometric parameters of the PS-CaF2 HPW are optimized by changing the geometric parameters (W1, W2, and W3). When W1 = 1500 nm, W2 = 300 nm, W3 = 70 nm, and the operating wavelength is ~3.5 μm, α and FOM are 0.019 dB/μm and 1594.99 for the PM 1, and α and FOM are 0.016 dB/μm and 1335.54 for the PM 2, respectively. Secondly, the waveguide sensitivity of the PS-CaF2 HPW is analyzed. The results show that the size of PS layer has a great influence on the waveguide sensitivity. The waveguide sensitivity decreases with the size of the PS layer increasing. In addition, the PS-CaF2 HPW has good temperature resistance. Moreover, temperature has almost no effect on Re(neff), nor α nor A nor FOM nor Swg in a temperature range from -40 K to 40 K. Finally, the fabrication tolerances of the PS-CaF2 HPW are demonstrated, and the good properties are maintained in a size tolerance range from -10 nm to 10 nm. With the advantages in propagation property and loss reduction, the PS-CaF2 HPW provides a feasible label-free biochemical sensing scheme and a method of polarization control devices.
      通信作者: 马涛, matao@htu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075057)、中国科学院界面物理技术重点实验室(批准号: CASKL-IPT2003)、河南省高等学校重点科研项目基础研究项目(批准号: 19B510006)和河南师范大学博士启动课题(批准号: gd17167, 5101239170010)资助的课题
      Corresponding author: Ma Tao, matao@htu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075057), Key Laboratory of Interfacial Physics Technology Project, Chinese Academy of Sciences (Grant No. CASKL-IPT2003), Basic Research Project of Key Scientific Research Projects of Higher Education Institutions of Henan Province, China (Grant No. 19B510006), and the Ph. D. Program of Henan Normal University (HNU), China (Grant Nos. gd17167, 5101239170010)
    [1]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [2]

    Burstein E, Chen W P, Chen Y J, Hartstein A 1974 J. Vac. Sci. Technol. 11 1004Google Scholar

    [3]

    Garcia de Abajo F J, Saenz J J 2005 Phys. Rev. Lett. 95 233901Google Scholar

    [4]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B. 27 094216Google Scholar

    [5]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B. 19 027301Google Scholar

    [6]

    Gong P Q, Li X G, Zhou X, Zhang Y A, Chen N, Wang S K, Zhang S Q, Zhao Y 2021 Opt. Laser Technol. 139 106981Google Scholar

    [7]

    Smith C L, Thilsted A H, Garcia-Ortiz C E, Radko I P, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi S I, Kristensen A 2014 Nano Lett. 14 1659Google Scholar

    [8]

    Kumari B, Barh A, Varshney R K, Pal B P 2016 Sens. Actuators, B 236 759Google Scholar

    [9]

    Kumari B, Varshney R K, Pal B P 2018 Sens. Actuators, B 255 3409Google Scholar

    [10]

    Mortensen N A, Bozhevolnyi S I, Alù A 2019 Nanophotonics 8 1315Google Scholar

    [11]

    Nedeljkovic M, Stankovic S, Mitchell C J, Khokhar A Z, Reynolds S A, Thomson D J, Gardes F Y, Littlejohns C G, Reed G T, Mashanovich G Z 2014 IEEE Photonics Technol. Lett. 26 1352Google Scholar

    [12]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 268Google Scholar

    [13]

    Cheng Z Z, Chen X, Wong C Y, Xu K, Tsang H K 2012 IEEE Photonics J. 4 1510Google Scholar

    [14]

    Shankar R, Bulu I, Lončar M 2013 Appl. Phys. Lett. 102 051108Google Scholar

    [15]

    El Shamy R S, Swillam M A, Khalil D A 2019 J. Lightwave Technol. 37 4394Google Scholar

    [16]

    Alonso-Ramos C, Nedeljkovic M, Benedikovic D, Penades J S, Littlejohns C G, Khokhar A Z, Perez-Galacho D, Vivien L, Cheben P, Mashanovich G Z 2016 Opt. Lett. 41 4324Google Scholar

    [17]

    Hassan K, Leroy F, Colas-des-Francs G, Weeber J C 2014 Opt. Lett. 39 697Google Scholar

    [18]

    Dai D X, He S L 2009 Opt. Express 17 16646Google Scholar

    [19]

    Mai W J, Wang Y L, Zhang Y Y, Cui L N, Yu L 2017 Chin. Phys. B. 34 024204Google Scholar

    [20]

    王志斌, 尹少杰, 段晓宁, 邓玉萍, 董伟, 孔祥瑞 2020 中国激光 47 0313001Google Scholar

    Wang Z B, Yin S J, Duan X N, Deng Y P, Dong W, Kong X R 2020 Chin. J. Las. 47 0313001Google Scholar

    [21]

    Heo J H, Shin D H, Kim S, Jang M H, Lee M H, Seo S W, Choi S H, Im S H 2017 J. Chem. Eng. Jpn. 323 153Google Scholar

    [22]

    Hwang K W, Park S H 2015 Mater. Res. Innovations 19 S8Google Scholar

    [23]

    Chen F, Lv H, Pang Z, Zhang J, Hou Y, Gu Y, Yang H, Yang G 2019 IEEE Sens. J. 19 8441Google Scholar

    [24]

    Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovcík L, Salamakha M Y 2019 Mol. Cryst. Liq. Cryst. 673 32Google Scholar

    [25]

    孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 60 057303Google Scholar

    Sun P, Hu M, Liu B, Sun F Y, Xun L J 2011 Acta. Phys. Sin. 60 057303Google Scholar

    [26]

    陈颖, 范卉青, 卢波 2014 63 244207Google Scholar

    Chen Y, Fan H Q, Lu B 2014 Acta. Phys. Sin. 63 244207Google Scholar

    [27]

    Chan K C, Tso C Y, Hussain A, Chao C Y H 2019 Appl. Therm. Eng. 161 114112Google Scholar

    [28]

    Gan F L, Wang B D, Jin Z H, Xie L L, Dai Z D, Zhou T X, Jiang X 2021 Sci. Total. Environ. 768 144529Google Scholar

    [29]

    Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M, Charrier J 2017 Opt. Mater. 72 596Google Scholar

    [30]

    Palik E D 1985 Academic Press 39 1

    [31]

    Ciminelli C, Campanella C M, Dell’Olio F, Campanella C E, Armenise M N 2013 Prog. Quantum Electron. 37 51Google Scholar

  • 图 1  非对称银膜的PS-CaF2混合等离子体波导示意图 (a)三维图; (b)波导截面图

    Fig. 1.  Schematic diagram of Ag film coated asymmetric PS-CaF2 hybrid plasma waveguide: (a) 3D diagram; (b) cross-sectional view.

    图 2  W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm和W3 (= H3) = 70时, 非对称银膜PS-CaF2混合等离子体波导中不同模式的模场分布图 (a) PM 1; (b) PM 2; 波导中心沿x方向的电场分布图 (c) PM 1; (d) PM 2; W1 (= H1) = 1500 nm和W2 (= H2) = 300 nm时, 无银膜普通波导的模场分布图 (e) TM01; (f) TE01; 波导中心沿x方向的电场分布图 (g) TM01, (h) TE01

    Fig. 2.  Mode field distributions of (a) PM 1 and (b) PM 2; electric field distribution along the x axis of (c) PM 1 and (d) PM 2; mode field distributions of (e) TM01 and (f) TE01; electric field distribution along the x axis of (g) TM01 and (h) TE01 when W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70.

    图 3  PM 1和PM 2的Re(neff)和α随(a)W1 (= H1), (b) W2 (= H2) 和 (c) W3 (= H3)变化的规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 3.  Re(neff) and α of the PM 1 and PM 2 with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm.

    图 4  PM 1和PM 2 的FOMA随(a)W1 (= H1), (b) W2 (= H2)和(c) W3 (= H3)变化的规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 4.  FOM and A of the PM 1 and PM 2 with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2(= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm.

    图 5  在不同的nc下, PM 1和PM 2的(a) Re(neff), (b) FOMA的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 5.  (a) Re(neff) and (b) FOM and A of the PM 1 and PM 2 with different nc as W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70 nm.

    图 6  非对称PS-CaF2混合等离子体波导的PM 1 和 PM 2 的Swg 随(a) W1 (= H1), (b) W2 (= H2)和(c) W3 (= H3) 的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm; 无Ag膜波导的PM 1 和 PM 2 的Swg 随(d) W1 (= H1)和 (e) W2 (= H2)的变化规律, W1(= H1)和W2(= H2)分别取1500 nm和300 nm

    Fig. 6.  with an asymmetric Ag film of Swg of the PM 1 and PM 2 in the PS-CaF2HPW with an asymmetric Ag films with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm. Without an asymmetric Ag film of Swg of the PM 1 and PM 2 in the waveguide without an asymmetric Ag film of with different (d) W1 (= H1) at W2 (= H2) = 300 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm.

    图 7  W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm和W3 (= H3) = 70 nm时, 在不同的ΔT下 (a) Re(neff), (b) α, (c) FOM和A的变化规律

    Fig. 7.  (a) Re(neff), (b) α, (c) FOM and A with different ΔT as W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70 nm

    图 8  制造流程 (a)在SiO2衬底上外延生长PS层; (b)电子束光刻使其成型; (c)涂上抗蚀剂; (d) 在PS上外延生长CaF2层; (e) 倾斜沉积金属Ag层; (f)电子束光刻使其成型, 并清除抗蚀剂

    Fig. 8.  (a) Grow PS on a SiO2 substrate; (b) pattern the resist through E-beam lithography; (c) it is coated with a resist; (d) grow CaF2 layers epitaxially on a PS layer; (e) oblique deposition of metal Ag; (f) electron beam lithography moulds it and removes the resist.

    图 9  不同的尺寸容差下, PM 1和PM 2 的FOM的变化 (ΔFOM)随(a) ΔW1和ΔH, (b) ΔW2和ΔH2; (c) ΔW3和ΔH3的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 9.  The changes of FOMFOM) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.

    图 11  不同的尺寸容差, PM 1和PM 2 的SwgSwg)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 11.  The changes of SwgSwg) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2(= H2) = 300 nm and W3(= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1(= H1) = 1500 nm and W3(= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1(= H1) = 1500 nm and W2(= H2) = 300 nm.

    图 10  在不同的尺寸容差下, PM 1和PM 2 的A 的变化(ΔA)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm

    Fig. 10.  The changes of AA) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; and (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.

    Baidu
  • [1]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [2]

    Burstein E, Chen W P, Chen Y J, Hartstein A 1974 J. Vac. Sci. Technol. 11 1004Google Scholar

    [3]

    Garcia de Abajo F J, Saenz J J 2005 Phys. Rev. Lett. 95 233901Google Scholar

    [4]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B. 27 094216Google Scholar

    [5]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B. 19 027301Google Scholar

    [6]

    Gong P Q, Li X G, Zhou X, Zhang Y A, Chen N, Wang S K, Zhang S Q, Zhao Y 2021 Opt. Laser Technol. 139 106981Google Scholar

    [7]

    Smith C L, Thilsted A H, Garcia-Ortiz C E, Radko I P, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi S I, Kristensen A 2014 Nano Lett. 14 1659Google Scholar

    [8]

    Kumari B, Barh A, Varshney R K, Pal B P 2016 Sens. Actuators, B 236 759Google Scholar

    [9]

    Kumari B, Varshney R K, Pal B P 2018 Sens. Actuators, B 255 3409Google Scholar

    [10]

    Mortensen N A, Bozhevolnyi S I, Alù A 2019 Nanophotonics 8 1315Google Scholar

    [11]

    Nedeljkovic M, Stankovic S, Mitchell C J, Khokhar A Z, Reynolds S A, Thomson D J, Gardes F Y, Littlejohns C G, Reed G T, Mashanovich G Z 2014 IEEE Photonics Technol. Lett. 26 1352Google Scholar

    [12]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 268Google Scholar

    [13]

    Cheng Z Z, Chen X, Wong C Y, Xu K, Tsang H K 2012 IEEE Photonics J. 4 1510Google Scholar

    [14]

    Shankar R, Bulu I, Lončar M 2013 Appl. Phys. Lett. 102 051108Google Scholar

    [15]

    El Shamy R S, Swillam M A, Khalil D A 2019 J. Lightwave Technol. 37 4394Google Scholar

    [16]

    Alonso-Ramos C, Nedeljkovic M, Benedikovic D, Penades J S, Littlejohns C G, Khokhar A Z, Perez-Galacho D, Vivien L, Cheben P, Mashanovich G Z 2016 Opt. Lett. 41 4324Google Scholar

    [17]

    Hassan K, Leroy F, Colas-des-Francs G, Weeber J C 2014 Opt. Lett. 39 697Google Scholar

    [18]

    Dai D X, He S L 2009 Opt. Express 17 16646Google Scholar

    [19]

    Mai W J, Wang Y L, Zhang Y Y, Cui L N, Yu L 2017 Chin. Phys. B. 34 024204Google Scholar

    [20]

    王志斌, 尹少杰, 段晓宁, 邓玉萍, 董伟, 孔祥瑞 2020 中国激光 47 0313001Google Scholar

    Wang Z B, Yin S J, Duan X N, Deng Y P, Dong W, Kong X R 2020 Chin. J. Las. 47 0313001Google Scholar

    [21]

    Heo J H, Shin D H, Kim S, Jang M H, Lee M H, Seo S W, Choi S H, Im S H 2017 J. Chem. Eng. Jpn. 323 153Google Scholar

    [22]

    Hwang K W, Park S H 2015 Mater. Res. Innovations 19 S8Google Scholar

    [23]

    Chen F, Lv H, Pang Z, Zhang J, Hou Y, Gu Y, Yang H, Yang G 2019 IEEE Sens. J. 19 8441Google Scholar

    [24]

    Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovcík L, Salamakha M Y 2019 Mol. Cryst. Liq. Cryst. 673 32Google Scholar

    [25]

    孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 60 057303Google Scholar

    Sun P, Hu M, Liu B, Sun F Y, Xun L J 2011 Acta. Phys. Sin. 60 057303Google Scholar

    [26]

    陈颖, 范卉青, 卢波 2014 63 244207Google Scholar

    Chen Y, Fan H Q, Lu B 2014 Acta. Phys. Sin. 63 244207Google Scholar

    [27]

    Chan K C, Tso C Y, Hussain A, Chao C Y H 2019 Appl. Therm. Eng. 161 114112Google Scholar

    [28]

    Gan F L, Wang B D, Jin Z H, Xie L L, Dai Z D, Zhou T X, Jiang X 2021 Sci. Total. Environ. 768 144529Google Scholar

    [29]

    Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M, Charrier J 2017 Opt. Mater. 72 596Google Scholar

    [30]

    Palik E D 1985 Academic Press 39 1

    [31]

    Ciminelli C, Campanella C M, Dell’Olio F, Campanella C E, Armenise M N 2013 Prog. Quantum Electron. 37 51Google Scholar

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器.  , 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性.  , 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导.  , 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究.  , 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [5] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [6] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质.  , 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [9] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究.  , 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [10] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究.  , 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [11] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [12] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [13] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响.  , 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [14] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [15] 程木田. 经典光场相干控制金属纳米线表面等离子体传输.  , 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [16] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [17] 陈华, 汪力. 金属导线偶合THz表面等离子体波.  , 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应.  , 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器.  , 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  4726
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-19
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回
Baidu
map