Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of a new type diluted magnetic semiconductors with independent charge and spin doping

Deng Zheng Zhao Guo-Qiang Jin Chang-Qing

Citation:

Recent progress of a new type diluted magnetic semiconductors with independent charge and spin doping

Deng Zheng, Zhao Guo-Qiang, Jin Chang-Qing
PDF
HTML
Get Citation
  • Due to the potential applications for spintronics devices, diluted ferromagnetic semiconductors (DMS) have received extensive attention for decades. However, in classical Ⅲ–Ⅴ based DMS material, such as (Ga,Mn)As, heterovalent (Ga3+, Mn2+) doping results in lack of individual control of carrier and spin doping, and seriously limited chemical solubility. The two difficulties prevent furtherincrease of the Curie temperature of the Ⅲ–Ⅴ based DMS. To overcome these difficulties, a series of new types of DMS with independent spin and charge doping have been synthesized, such as Ⅰ–Ⅱ–Ⅴ based LiZnAs and Ⅱ–Ⅱ–Ⅴ based (Ba,K)(Zn,Mn)2As2. In these new materials, isovalent (Zn,Mn) substitution is only spin doping, while charge is independently doped by heterovalentsubstitution of non-magnetic elements. As a result (Ba,K)(Zn,Mn)2As2 obtains the reliable record of Curie temperature (230 K) among DMS in which ferromagnetic ordering is mediated by itinerate carriers. In this review, we summarize the recent development of the new DMS materials with following aspects: 1) the discovery and synthesis of several typical new DMS materials; 2) physical properties studies with muon spin relaxation and in-situ high pressure techniques; 3) single crystal growth, Andreev reflection junction based on single crystal and measurements of spin polarization.
      Corresponding author: Jin Chang-Qing, jin@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFB0405703, 2018YFA03057001) and the National Natural Science Foundation of China (Grant No. 11534016).
    [1]

    Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)

    [2]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar

    [3]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [4]

    ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [5]

    常凯, 夏建白 2004 物理 33 414Google Scholar

    Chang K, Xia J B 2004 Physics 33 414Google Scholar

    [6]

    Ohno H 1998 Science 281 951Google Scholar

    [7]

    Dietl T 2000 Science 287 1019Google Scholar

    [8]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [9]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [10]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109

    [11]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [13]

    邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar

    Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar

    [14]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar

    [15]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar

    [16]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [17]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [18]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [19]

    Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar

    [20]

    Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar

    [21]

    Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar

    [22]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [23]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar

    [24]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [25]

    Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar

    [26]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [27]

    Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar

    [28]

    Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar

    [29]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [30]

    Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar

    [31]

    Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar

    [32]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [33]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [34]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [35]

    Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar

    [36]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar

    [37]

    Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar

    [38]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar

    [39]

    Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)

    [40]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [41]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar

    [42]

    Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar

    [43]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [44]

    Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar

    [45]

    Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar

    [46]

    Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar

    [47]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [48]

    Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar

  • 图 1  (a) (Ga,Mn)As的晶体结构, 其中Mn同时引入电荷和自旋; (b) Li(Zn,Mn)As的晶体结构, 其中Mn仅引入自旋, 电荷来自Li含量的变化[12]

    Figure 1.  (a) Crystal structure of (Ga,Mn)As, in which dependent charge and spin doping by Mn2+ dopant; (b) crystal structure of Li(Zn,Mn)As, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by controlling Li concentration[12].

    图 2  (a)不同Mn含量Li1.1(Zn,Mn)As的M(T)曲线; (b)不同Mn含量Li1.1(Zn,Mn)As的M(H)曲线, 其中灰色的磁滞回线对应了上方的横坐标; (c)样品Li1.1(Zn0.95Mn0.05)As在低温下的霍尔电阻, 15 K以下表现出了明显的反常霍尔效应[12]

    Figure 2.  (a) Temperature dependence of magnetization of Li1.1(Zn1xMnx)As; (b) field dependence of magnetization of Li1.1(Zn1xMnx)As at various tempeartures; (c) Hall resistance of Li1.1(Zn0.95Mn0.05)As and the anomalous Hall effect below 15 K[12].

    图 3  (a) BZA的晶体结构中, Mn引入自旋, K引入电荷; (b) Li(Zn,Mn)As中[Zn/MnAs4]四面体的间距; (c) BZA中[Zn/MnAs4]四面体的间距[17]

    Figure 3.  (a) Crystal structure of BZA, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by (Ba,K)substitution; (b) distance of nearest [Zn/MnAs4] tetrahedra (4.20 Å) in Li(Zn,Mn)As; (c) distance of nearest [Zn/MnAs4] tetrahedra (2.91 Å) in BZA[17].

    图 4  (a)不同K, Mn含量(Ba,K)(Zn,Mn)2As2ρ(T)曲线; (b)样品(Ba0.7K0.3)(Zn0.85Mn0.15)2As2M(T)和M(H), M(T)中上升的拐点即为230 K的居里温度点; (c)样品(Ba0.85K0.15)(Zn0.9Mn0.1)2As2在低温下的霍尔电阻, 50 K以下表现出了明显的反常霍尔效应[17]

    Figure 4.  (a) Temperature dependence of resistivity of (Ba,K)(Zn,Mn)2As2; (b) temperature dependence of magnetization and field dependence of magnetization (inset) of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, the upturn point, namely Curie temperature is 230 K; (c) Hall resistance of (Ba0.85K0.15)(Zn0.9Mn0.1)2As2 and the anomalous Hall effect below 50 K[17].

    图 5  μSR测试结果汇总 (a) ZF模式下Li1.1(Zn0.95Mn0.05)As的时间谱; (b) ZF模式与WTF模式下Li1.1(Zn0.95Mn0.05)As铁磁含量的拟合结果, 两者互相吻合[12]; (c) ZF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2的时间谱; (d) ZF模式与WTF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2铁磁含量的拟合结果, 铁磁体积含量与SQUID的测量结果吻合[17]

    Figure 5.  Results of muon spin relaxation measurements: (a) Time spectra of Li1.1(Zn0.95Mn0.05)As in ZF process; (b) the volume fraction of the magnetically ordered region in Li1.1(Zn0.95Mn0.05)As, derived from ZF and WTF spectra[12]; (c) time spectra of (Ba0.80K0.20)(Zn0.9Mn0.1)2As2 in ZF process; (d) the volume fraction of the magnetically ordered region in (Ba0.80K0.20)(Zn0.9Mn0.1)2As2, derived from ZF and WTF spectra[17].

    图 6  (Ba0.75K0.25)(Zn0.95Mn0.05)2As2的高压表征 (a)常压下As的K边XAS和XMCD谱; (b) 2 K时高压原位的As-K边XMCD谱, 插图为XMCD谱的最高值随压力的变化; (c) 不同压力的电阻-温度曲线; (d)常温下XES谱随压力的演化, 插图为ΔE'随压力变化[26,34]

    Figure 6.  In-situ high pressure properties of (Ba0.75K0.25)(Zn0.95Mn0.05)2As2: (a) As K-edge XAS near edge structure (black curve) and XMCD (blue curve) data takenat T = 2 K and ambient pressure; (b) pressure-dependent As K-edge XMCD signal, the inset is XMCD peak intensity normalized to unity at ambient pressure, dreen data points are compression data, while the red data point was obtained on decompression; (c) temperature-dependent resistance plots at various pressures; (d) X-ray emission spectra at high pressures and room temperature, the spectra were shifted in the vertical for clarity, red solid lines are fits using three Gaussian functions; left corner inset: energy difference ΔE'[26,34].

    图 7  (Ba0.80K0.20)(Zn0.95Mn0.05)2As2的晶格常数随压力的变化, 左下角插图显示了ZnAs层间As-As距离, 右上角插图显示了MnAs4四面体内的As-Zn-As夹角α[34]

    Figure 7.  Lattice parameters of (Ba0.80K0.20)(Zn0.95Mn0.05)2As2 as a function of pressure. Data were normalized to unity at ambient pressure. Left corner inset: crystal structure of (Ba,K)(Zn,Mn)2As2, and the pressure dependence of interlayer As-As distance d. Upper right corner inset: MnAs4 tetrahedron geometry, and the pressure dependence of As-Mn-As bond angle α in the MnAs4 tetrahedron[34].

    图 8  (a)不同温度下Pb-BZA结的安德烈夫反谱以及拟合结果[47]; (b)低温下Pb-BNZA结的安德烈夫反谱以及拟合结果[48]

    Figure 8.  (a) The Andreev reflection spectra of Pb-BZA heterjunction and the best BTK fit[47]; (b) Andreev reflection spectra of Pb-BNZA and the best BTK fit[48].

    图 9  (a) 2θ模式下BZA单晶的XRD谱, 插图为单晶照片以及晶体结构示意图; (b)沿不同方向测量的BZA单晶的M(T)曲线; (c)以BZA单晶为基础构造的安德烈夫反射结示意图[47]

    Figure 9.  (a) XRD pattern of BZA single crystal with 2θ process, the insets are photographic of the single crystal and crystal structure of BZA; (b) temperature dependence of magnetization of the single crystal along ab-plane and c-axis; (c) sketch of the Andreev reflection junction based on BZA single crystal[47].

    图 10  三类不同功能材料的结构示意图 (a)超导体(Ba,K)Fe2As2; (b)铁磁性稀磁半导体BZA; (c)反铁磁体BaMn2As2[17]

    Figure 10.  Crystal structure and lattice parameters of (a) superconductor (Ba,K)Fe2As2; (b) ferromagnetic DMS BZA; (c) antiferromagnetic BaMn2As2[17].

    图 11  稀磁半导体发展路线图[11]

    Figure 11.  Roadmap on DMS[11].

    Baidu
  • [1]

    Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)

    [2]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar

    [3]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [4]

    ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [5]

    常凯, 夏建白 2004 物理 33 414Google Scholar

    Chang K, Xia J B 2004 Physics 33 414Google Scholar

    [6]

    Ohno H 1998 Science 281 951Google Scholar

    [7]

    Dietl T 2000 Science 287 1019Google Scholar

    [8]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [9]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [10]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109

    [11]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [13]

    邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar

    Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar

    [14]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar

    [15]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar

    [16]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [17]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [18]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [19]

    Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar

    [20]

    Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar

    [21]

    Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar

    [22]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [23]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar

    [24]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [25]

    Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar

    [26]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [27]

    Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar

    [28]

    Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar

    [29]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [30]

    Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar

    [31]

    Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar

    [32]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [33]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [34]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [35]

    Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar

    [36]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar

    [37]

    Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar

    [38]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar

    [39]

    Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)

    [40]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [41]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar

    [42]

    Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar

    [43]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [44]

    Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar

    [45]

    Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar

    [46]

    Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar

    [47]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [48]

    Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar

  • [1] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [2] Peng Yi, Zhao Guo-Qiang, Deng Zheng, Jin Chang-Qing. Recent advances in application-oriented new generation diluted magnetic semiconductors. Acta Physica Sinica, 2024, 73(1): 017503. doi: 10.7498/aps.73.20231940
    [3] Li Chun-Lei, Zheng Jun, Wang Xiao-Ming, Xu Yan. Spin-polarized transport properties in diluted-magnetic-semiconductor/semiconductor superlattices under light-field assisted. Acta Physica Sinica, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [4] Sun Jing-Qi, Wu Xu-Cai, Que Zhi-Xiong, Zhang Wei-Bing. Prediction of ferromagnetic materials with high Curie temperature based on material composition information. Acta Physica Sinica, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [5] Zheng Long-Li, Qi Shi-Chao, Wang Chun-Ming, Shi Lei. Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta Physica Sinica, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [6] Du Cheng-Xu, Wang Ting, Du Ying-Yan, Jia Qian, Cui Yu-Ting, Hu Ai-Yuan, Xiong Yuan-Qiang, Wu Zhi-Min. Photoelectric properties of Ag and Cr co-doped LiZnP new diluted magnetic semiconductors. Acta Physica Sinica, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [7] Hou Qing-Yu, Xu Zhen-Chao, Wu Yun, Zhao Er-Jun. Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation. Acta Physica Sinica, 2015, 64(16): 167201. doi: 10.7498/aps.64.167201
    [8] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [9] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [10] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [11] Wang Shi-Wei, Zhu Ming-Yuan, Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [12] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [13] Lu Zhong-Lin, Zou Wen-Qin, Xu Ming-Xiang, Zhang Feng-Ming. Synthesis and electric, magnetic properties of single crystalline and twin-crystalline Co-doped ZnO thin films. Acta Physica Sinica, 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [14] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [15] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [16] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [17] Du Jian, Zhang Peng, Liu Ji-Hong, Li Jin-Liang, Li Yu-Xian. Spin-tunneling time and transport in a ferromagnetic/semiconductor/ferromagnetic heterojunction with a δ tunnel barrier. Acta Physica Sinica, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [18] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] Wang Yi, Sun Lei, Han De-Dong, Liu Li-Feng, Kang Jin-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [20] Lin Qiu-Bao, Li Ren-Quan, Zeng Yong-Zhi, Zhu Zi-Zhong. Electronic and magnetic properties of 3d transition-metal-doped Ⅲ-Ⅴ semiconductors:first-principle calculations. Acta Physica Sinica, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
Metrics
  • Abstract views:  10598
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2019
  • Accepted Date:  15 August 2019
  • Available Online:  19 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map