-
Piezoelectric materials have been extensively employed in numerous devices. With the rapid development of modern information technology, the high temperature piezoelectric materials that can work in extreme environments are in great demand. Therefore, it is urgent to investigate piezoelectric materials with high Curie temperature and strong piezoelectric performance. This paper reports the significantly improved piezoelectric properties of high temperature bismuth titanate-tantalate (Bi3TiTaO9, BTT) polycrystalline ceramics. In this work, the rare-earth cerium ions modified Bi3TiTaO9 piezoelectric ceramics are prepared by the conventional ceramic technique. The introduction of Ce ions significantly enhances the piezoelectric performance of BTT ceramics. The BTT-6Ce (BTT+0.6 wt.% CeO2) exhibits optimized piezoelectric properties with a piezoelectric coefficient d33 of 16.2 pC/N, which is four times the value of unmodified BTT (d33~4.2 pC/N). The dielectric and ferroelectric measurements indicate that Ce ions remarkably reduce the dielectric loss tanδ and increase polarizations, which are beneficial to the piezoelectric properties. The BTT and BTT-6Ce (x = 0.6) ceramics each have a high Curie temperature TC: ~890 ℃ and 879 ℃, respectively. The coercive field Ec of BTT and BTT-6Ce ceramics are 53.8 kV/cm and 57.5 kV/cm, respectively, while the remnant polarizations Pr of BTT and BTT-6Ce ceramics are 3.4 μC/cm2 and 5.4 μC/cm2, respectively, at a frequency of 1 Hz, temperature of 180 ℃, and drive field of 110 kV/cm. The thermal annealing measurements indicate that the BTT ceramics still possess stable piezoelectric properties after being annealed at 800 ℃. The results exhibit that the cerium-modified BTT ceramics are good materials for high temperature applications.
-
Keywords:
- bismuth layer-structured ferroelectrics /
- Bi3TiTaO9 /
- piezoelectric ceramics /
- high Curie temperature
[1] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[2] Zhang S, Yu F 2011 J. Am. Ceram. Soc. 94 3153Google Scholar
[3] Zhao T L, Bokov A A, Wu J G, Wang H L, Wang C M, Yu Y, Wang C L, Zeng K, Ye Z G, Dong S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar
[4] Zhu X, Fu M, Stennett M C, Vilarinho P M, Levin I, Randall C A, Gardner J, Morrison F D, Reaney I M 2015 Chem. Mater. 27 3250Google Scholar
[5] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞 2005 54 2346Google Scholar
Zhang L N, Zhao S C, Zheng L Y, Li G R, Yin Q R 2005 Acta Phys. Sin. 54 2346Google Scholar
[6] 单丹, 朱珺钏, 金灿, 陈小兵 2009 58 7235Google Scholar
Shan D, Zhu J C, Jin C, Chen X B 2009 Acta Phys. Sin. 58 7235Google Scholar
[7] 孙琳, 褚君浩, 杨平雄, 冯楚德 2009 58 5790Google Scholar
Sun L, Chu J H, Yang P X, Feng C D 2009 Acta Phys. Sin. 58 5790Google Scholar
[8] Aurivillius B 1949 Ark. Kemi 1 463
[9] Wang C M, Wang J F, Zhang S J, Shrout T R 2009 Phys. Status Solidi (RRL)
3 49Google Scholar [10] Moure A, Pardo L 2005 J. Appl. Phys. 97 084103Google Scholar
[11] Muneyasu S, Hajime N, Jin O, Hiroshi F, Tadashi T 2003 Jpn. J. Appl. Phys. 42 6090Google Scholar
[12] Noguchi Y, Satoh R, Miyayama M, Kudo T 2001 J. Ceram. Soc. Jpn. 109 29Google Scholar
[13] Xie D A N, Zhang Z, Ren T, Liu L 2006 Integr. Ferroelectr. 79 227Google Scholar
[14] Suzuki M, Inai S, Tokutsu T, Nagata H, Takenaka T 2007 Ferroelectrics 356 62Google Scholar
[15] Nagata H, Itagaki M, Takenaka T 2003 Ferroelectrics 286 85Google Scholar
[16] Suzuki M, Nagata H, Funakubo H, Takenaka T 2003 Key Eng. Mater. 248 11Google Scholar
[17] Sun Y, Li Z, Zhang H, Yu C, Viola G, Fu S, Koval V, Yan H 2016 Mater. Lett. 175 79Google Scholar
[18] Long C, Fan H, Wu Y, Li Y 2014 J. Appl. Phys. 116 074111Google Scholar
[19] Long C, Fan H, Li M 2013 Dalton Trans. 42 3561Google Scholar
[20] Troyanchuk I O, Karpinsky D V, Bushinsky M V, Mantytskaya O S, Tereshko N V, Shut V N 2011 J. Am. Ceram. Soc. 94 4502Google Scholar
[21] Wang C M, Wang J F, Gai Z G 2007 Scripta Mater. 57 789Google Scholar
[22] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar
[23] Shannon R 1976 Acta Cryst. A 32 751Google Scholar
[24] Wang C M, Zhao L, Liu Y, Withers R L, Zhang S, Wang Q 2016 Ceram. Int. 42 4268Google Scholar
[25] Frit B, Mercurio J P 1992 J. Alloy. Compd. 188 27Google Scholar
[26] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第161页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p161 (in Chinese)
[27] Chen J, Cheng J, Dong S 2014 J. Adv. Dielect. 4 1430002Google Scholar
[28] Wang C M, Zhang S J, Wang J F, Zhao M L, Wang C L 2009 Mater. Chem. Phys. 118 21Google Scholar
[29] Wang Q, Wang C M, Wang J F, Zhang S 2016 Ceram. Int. 42 6993Google Scholar
-
表 1 高居里温度(TC~900 ℃)铋层状结构氧化物压电陶瓷的电学性能参数: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT)
Table 1. Electrical parameters of high Curie temperature (TC~900 ℃) bismuth layer-structured oxide piezoelectric ceramics: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT)
-
[1] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[2] Zhang S, Yu F 2011 J. Am. Ceram. Soc. 94 3153Google Scholar
[3] Zhao T L, Bokov A A, Wu J G, Wang H L, Wang C M, Yu Y, Wang C L, Zeng K, Ye Z G, Dong S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar
[4] Zhu X, Fu M, Stennett M C, Vilarinho P M, Levin I, Randall C A, Gardner J, Morrison F D, Reaney I M 2015 Chem. Mater. 27 3250Google Scholar
[5] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞 2005 54 2346Google Scholar
Zhang L N, Zhao S C, Zheng L Y, Li G R, Yin Q R 2005 Acta Phys. Sin. 54 2346Google Scholar
[6] 单丹, 朱珺钏, 金灿, 陈小兵 2009 58 7235Google Scholar
Shan D, Zhu J C, Jin C, Chen X B 2009 Acta Phys. Sin. 58 7235Google Scholar
[7] 孙琳, 褚君浩, 杨平雄, 冯楚德 2009 58 5790Google Scholar
Sun L, Chu J H, Yang P X, Feng C D 2009 Acta Phys. Sin. 58 5790Google Scholar
[8] Aurivillius B 1949 Ark. Kemi 1 463
[9] Wang C M, Wang J F, Zhang S J, Shrout T R 2009 Phys. Status Solidi (RRL)
3 49Google Scholar [10] Moure A, Pardo L 2005 J. Appl. Phys. 97 084103Google Scholar
[11] Muneyasu S, Hajime N, Jin O, Hiroshi F, Tadashi T 2003 Jpn. J. Appl. Phys. 42 6090Google Scholar
[12] Noguchi Y, Satoh R, Miyayama M, Kudo T 2001 J. Ceram. Soc. Jpn. 109 29Google Scholar
[13] Xie D A N, Zhang Z, Ren T, Liu L 2006 Integr. Ferroelectr. 79 227Google Scholar
[14] Suzuki M, Inai S, Tokutsu T, Nagata H, Takenaka T 2007 Ferroelectrics 356 62Google Scholar
[15] Nagata H, Itagaki M, Takenaka T 2003 Ferroelectrics 286 85Google Scholar
[16] Suzuki M, Nagata H, Funakubo H, Takenaka T 2003 Key Eng. Mater. 248 11Google Scholar
[17] Sun Y, Li Z, Zhang H, Yu C, Viola G, Fu S, Koval V, Yan H 2016 Mater. Lett. 175 79Google Scholar
[18] Long C, Fan H, Wu Y, Li Y 2014 J. Appl. Phys. 116 074111Google Scholar
[19] Long C, Fan H, Li M 2013 Dalton Trans. 42 3561Google Scholar
[20] Troyanchuk I O, Karpinsky D V, Bushinsky M V, Mantytskaya O S, Tereshko N V, Shut V N 2011 J. Am. Ceram. Soc. 94 4502Google Scholar
[21] Wang C M, Wang J F, Gai Z G 2007 Scripta Mater. 57 789Google Scholar
[22] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar
[23] Shannon R 1976 Acta Cryst. A 32 751Google Scholar
[24] Wang C M, Zhao L, Liu Y, Withers R L, Zhang S, Wang Q 2016 Ceram. Int. 42 4268Google Scholar
[25] Frit B, Mercurio J P 1992 J. Alloy. Compd. 188 27Google Scholar
[26] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第161页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p161 (in Chinese)
[27] Chen J, Cheng J, Dong S 2014 J. Adv. Dielect. 4 1430002Google Scholar
[28] Wang C M, Zhang S J, Wang J F, Zhao M L, Wang C L 2009 Mater. Chem. Phys. 118 21Google Scholar
[29] Wang Q, Wang C M, Wang J F, Zhang S 2016 Ceram. Int. 42 6993Google Scholar
Catalog
Metrics
- Abstract views: 12443
- PDF Downloads: 251
- Cited By: 0