搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性

郑隆立 齐世超 王春明 石磊

引用本文:
Citation:

高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性

郑隆立, 齐世超, 王春明, 石磊

Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9)

Zheng Long-Li, Qi Shi-Chao, Wang Chun-Ming, Shi Lei
PDF
HTML
导出引用
  • 随着现代信息技术的飞速发展, 压电材料的应用范围进一步拓展, 使用的温度环境越来越严苛, 在一些极端环境下对压电材料的服役性能提出了新的挑战. 因此研究具有高居里温度同时具有较强压电性能的压电材料, 是迫切需要解决的问题. 本文利用普通陶瓷工艺制备了高居里温度铋层状结构钛钽酸铋Bi3TiTaO9+x wt.% CeO2 (x = 0—0.8, 简写为BTT-10xCe)压电陶瓷, 研究了钛钽酸铋陶瓷的压电、介电和铁电特性. 压电特性研究表明, 稀土Ce离子的引入可以提高BTT陶瓷的压电性能, BTT-6Ce (x = 0.6)陶瓷具有最大的压电系数d33~16.2 pC/N, 约为纯的BTT陶瓷压电系数(d33~4.2 pC/N)的4倍. 介电特性研究显示, BTT和BTT-6Ce (x = 0.6)陶瓷均具有高的居里温度, TC分别为890 ℃和879 ℃, 同时稀土Ce离子的引入降低了BTT陶瓷的高温介电损耗tanδ. 铁电特性研究表明, 稀土Ce离子的引入提高了BTT陶瓷的极化强度. 在180 ℃温度下和110 kV/cm的电场驱动下, BTT和BTT-6Ce (x = 0.6)陶瓷的矫顽场Ec分别为53.8 kV/cm和57.5 kV/cm, 剩余极化强度Pr分别为3.4 μC/cm2和5.4 μC/cm2. 退火实验显示: 稀土Ce离子组分优化的BTT压电陶瓷经800 ℃的高温退火后, 仍具有优异的压电性能温度稳定性. 研究结果表明, BTT-6Ce (x = 0.6)陶瓷兼具高的居里温度Tc约为879 ℃和强的压电性能d33约为16.2 pC/N、较好的压电性能温度稳定性, 是一类压电性能优异的高温压电陶瓷.
    Piezoelectric materials have been extensively employed in numerous devices. With the rapid development of modern information technology, the high temperature piezoelectric materials that can work in extreme environments are in great demand. Therefore, it is urgent to investigate piezoelectric materials with high Curie temperature and strong piezoelectric performance. This paper reports the significantly improved piezoelectric properties of high temperature bismuth titanate-tantalate (Bi3TiTaO9, BTT) polycrystalline ceramics. In this work, the rare-earth cerium ions modified Bi3TiTaO9 piezoelectric ceramics are prepared by the conventional ceramic technique. The introduction of Ce ions significantly enhances the piezoelectric performance of BTT ceramics. The BTT-6Ce (BTT+0.6 wt.% CeO2) exhibits optimized piezoelectric properties with a piezoelectric coefficient d33 of 16.2 pC/N, which is four times the value of unmodified BTT (d33~4.2 pC/N). The dielectric and ferroelectric measurements indicate that Ce ions remarkably reduce the dielectric loss tanδ and increase polarizations, which are beneficial to the piezoelectric properties. The BTT and BTT-6Ce (x = 0.6) ceramics each have a high Curie temperature TC: ~890 ℃ and 879 ℃, respectively. The coercive field Ec of BTT and BTT-6Ce ceramics are 53.8 kV/cm and 57.5 kV/cm, respectively, while the remnant polarizations Pr of BTT and BTT-6Ce ceramics are 3.4 μC/cm2 and 5.4 μC/cm2, respectively, at a frequency of 1 Hz, temperature of 180 ℃, and drive field of 110 kV/cm. The thermal annealing measurements indicate that the BTT ceramics still possess stable piezoelectric properties after being annealed at 800 ℃. The results exhibit that the cerium-modified BTT ceramics are good materials for high temperature applications.
      通信作者: 王春明, wangcm@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872166)和山东大学基本科研业务费(批准号: 2016JC036, 2017JC032)资助的课题.
      Corresponding author: Wang Chun-Ming, wangcm@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51872166) and the Fundamental Research Fund for Shandong University, China (Grant Nos. 2016JC036, 2017JC032).
    [1]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [2]

    Zhang S, Yu F 2011 J. Am. Ceram. Soc. 94 3153Google Scholar

    [3]

    Zhao T L, Bokov A A, Wu J G, Wang H L, Wang C M, Yu Y, Wang C L, Zeng K, Ye Z G, Dong S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [4]

    Zhu X, Fu M, Stennett M C, Vilarinho P M, Levin I, Randall C A, Gardner J, Morrison F D, Reaney I M 2015 Chem. Mater. 27 3250Google Scholar

    [5]

    张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞 2005 54 2346Google Scholar

    Zhang L N, Zhao S C, Zheng L Y, Li G R, Yin Q R 2005 Acta Phys. Sin. 54 2346Google Scholar

    [6]

    单丹, 朱珺钏, 金灿, 陈小兵 2009 58 7235Google Scholar

    Shan D, Zhu J C, Jin C, Chen X B 2009 Acta Phys. Sin. 58 7235Google Scholar

    [7]

    孙琳, 褚君浩, 杨平雄, 冯楚德 2009 58 5790Google Scholar

    Sun L, Chu J H, Yang P X, Feng C D 2009 Acta Phys. Sin. 58 5790Google Scholar

    [8]

    Aurivillius B 1949 Ark. Kemi 1 463

    [9]

    Wang C M, Wang J F, Zhang S J, Shrout T R 2009 Phys. Status Solidi (RRL) 3 49Google Scholar

    [10]

    Moure A, Pardo L 2005 J. Appl. Phys. 97 084103Google Scholar

    [11]

    Muneyasu S, Hajime N, Jin O, Hiroshi F, Tadashi T 2003 Jpn. J. Appl. Phys. 42 6090Google Scholar

    [12]

    Noguchi Y, Satoh R, Miyayama M, Kudo T 2001 J. Ceram. Soc. Jpn. 109 29Google Scholar

    [13]

    Xie D A N, Zhang Z, Ren T, Liu L 2006 Integr. Ferroelectr. 79 227Google Scholar

    [14]

    Suzuki M, Inai S, Tokutsu T, Nagata H, Takenaka T 2007 Ferroelectrics 356 62Google Scholar

    [15]

    Nagata H, Itagaki M, Takenaka T 2003 Ferroelectrics 286 85Google Scholar

    [16]

    Suzuki M, Nagata H, Funakubo H, Takenaka T 2003 Key Eng. Mater. 248 11Google Scholar

    [17]

    Sun Y, Li Z, Zhang H, Yu C, Viola G, Fu S, Koval V, Yan H 2016 Mater. Lett. 175 79Google Scholar

    [18]

    Long C, Fan H, Wu Y, Li Y 2014 J. Appl. Phys. 116 074111Google Scholar

    [19]

    Long C, Fan H, Li M 2013 Dalton Trans. 42 3561Google Scholar

    [20]

    Troyanchuk I O, Karpinsky D V, Bushinsky M V, Mantytskaya O S, Tereshko N V, Shut V N 2011 J. Am. Ceram. Soc. 94 4502Google Scholar

    [21]

    Wang C M, Wang J F, Gai Z G 2007 Scripta Mater. 57 789Google Scholar

    [22]

    Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar

    [23]

    Shannon R 1976 Acta Cryst. A 32 751Google Scholar

    [24]

    Wang C M, Zhao L, Liu Y, Withers R L, Zhang S, Wang Q 2016 Ceram. Int. 42 4268Google Scholar

    [25]

    Frit B, Mercurio J P 1992 J. Alloy. Compd. 188 27Google Scholar

    [26]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第161页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p161 (in Chinese)

    [27]

    Chen J, Cheng J, Dong S 2014 J. Adv. Dielect. 4 1430002Google Scholar

    [28]

    Wang C M, Zhang S J, Wang J F, Zhao M L, Wang C L 2009 Mater. Chem. Phys. 118 21Google Scholar

    [29]

    Wang Q, Wang C M, Wang J F, Zhang S 2016 Ceram. Int. 42 6993Google Scholar

  • 图 1  铋层状结构氧化物 (m = 2)的晶体结构示意图

    Fig. 1.  Crystal structure schematic diagram of bismuth layer-structured oxides (m = 2)

    图 2  Bi3TiTaO9压电陶瓷的粉末XRD图谱 (a) x = 0; (b) x = 0.4; (c) x = 0.8

    Fig. 2.  Powder X-ray diffraction of Bi3TiTaO9 ceramics: (a) x = 0; (b) x = 0.4; (c) x = 0.8

    图 3  压电系数d33x的变化图谱

    Fig. 3.  Composition-dependent piezoelectric coefficient d33

    图 4  阻抗|Z|和相角θ频谱

    Fig. 4.  Frequency dependence of impedance |Z| and phase angle θ of BTT-6Ce in planar mode

    图 5  Bi3TiTaO9陶瓷表面扫描电镜 (a) x = 0; (b) x = 0.6

    Fig. 5.  Scanning electron microscopy images showing the surfaces of Bi3TiTaO9 ceramics: (a) x = 0; (b) x = 0.6

    图 6  Bi3TiTaO9陶瓷的介电温谱 (a) 介电常数; (b) 介电损耗 (1 MHz)

    Fig. 6.  Temperature dependence of the dielectric constant (a), dielectric loss tanδ for the Bi3TiTaO9 ceramics measured at 1 MHz (b)

    图 7  (a) BTT和(b) BTT-6Ce (x = 0.6)陶瓷的室温P-EI-E图谱(频率1 Hz)

    Fig. 7.  The polarization-electric field hysteresis (P-E) loops and current-electric field (I-E) curves of BTT (a), and BTT-6Ce (x = 0.6) (b) ceramics measured at room temperature and at a frequency of 1 Hz

    图 8  (a) BTT和 (b) BTT-6Ce (x = 0.6) 陶瓷的P-EI-E图谱 (180 ℃, 频率1 Hz)

    Fig. 8.  The polarization-electric field hysteresis (P-E) loops and current-electric field (I-E) curves of BTT (a) and BTT-6Ce (x = 0.6) (b) ceramics measured at 180 ℃ and at a frequency of 1 Hz

    图 9  退火温度对BTT陶瓷压电系数d33的影响

    Fig. 9.  The piezoelectric coefficient d33 of the BTT and BTT-Ce ceramics as a function of annealing temperature

    表 1  高居里温度(TC~900 ℃)铋层状结构氧化物压电陶瓷的电学性能参数: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT)

    Table 1.  Electrical parameters of high Curie temperature (TC~900 ℃) bismuth layer-structured oxide piezoelectric ceramics: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT)

    m Ceramics TC/℃ d33/pC·N–1 Ref.
    2 CBN 936 5 [9]
    2 BTN 907 3 [10]
    2 BTT 890 4.2 This work
    2 CBN-NaCe 900 16 [28]
    2 BTN-Ce 894 16 [29]
    2 BTT-Ce 879 16.2 This work
    下载: 导出CSV
    Baidu
  • [1]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [2]

    Zhang S, Yu F 2011 J. Am. Ceram. Soc. 94 3153Google Scholar

    [3]

    Zhao T L, Bokov A A, Wu J G, Wang H L, Wang C M, Yu Y, Wang C L, Zeng K, Ye Z G, Dong S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [4]

    Zhu X, Fu M, Stennett M C, Vilarinho P M, Levin I, Randall C A, Gardner J, Morrison F D, Reaney I M 2015 Chem. Mater. 27 3250Google Scholar

    [5]

    张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞 2005 54 2346Google Scholar

    Zhang L N, Zhao S C, Zheng L Y, Li G R, Yin Q R 2005 Acta Phys. Sin. 54 2346Google Scholar

    [6]

    单丹, 朱珺钏, 金灿, 陈小兵 2009 58 7235Google Scholar

    Shan D, Zhu J C, Jin C, Chen X B 2009 Acta Phys. Sin. 58 7235Google Scholar

    [7]

    孙琳, 褚君浩, 杨平雄, 冯楚德 2009 58 5790Google Scholar

    Sun L, Chu J H, Yang P X, Feng C D 2009 Acta Phys. Sin. 58 5790Google Scholar

    [8]

    Aurivillius B 1949 Ark. Kemi 1 463

    [9]

    Wang C M, Wang J F, Zhang S J, Shrout T R 2009 Phys. Status Solidi (RRL) 3 49Google Scholar

    [10]

    Moure A, Pardo L 2005 J. Appl. Phys. 97 084103Google Scholar

    [11]

    Muneyasu S, Hajime N, Jin O, Hiroshi F, Tadashi T 2003 Jpn. J. Appl. Phys. 42 6090Google Scholar

    [12]

    Noguchi Y, Satoh R, Miyayama M, Kudo T 2001 J. Ceram. Soc. Jpn. 109 29Google Scholar

    [13]

    Xie D A N, Zhang Z, Ren T, Liu L 2006 Integr. Ferroelectr. 79 227Google Scholar

    [14]

    Suzuki M, Inai S, Tokutsu T, Nagata H, Takenaka T 2007 Ferroelectrics 356 62Google Scholar

    [15]

    Nagata H, Itagaki M, Takenaka T 2003 Ferroelectrics 286 85Google Scholar

    [16]

    Suzuki M, Nagata H, Funakubo H, Takenaka T 2003 Key Eng. Mater. 248 11Google Scholar

    [17]

    Sun Y, Li Z, Zhang H, Yu C, Viola G, Fu S, Koval V, Yan H 2016 Mater. Lett. 175 79Google Scholar

    [18]

    Long C, Fan H, Wu Y, Li Y 2014 J. Appl. Phys. 116 074111Google Scholar

    [19]

    Long C, Fan H, Li M 2013 Dalton Trans. 42 3561Google Scholar

    [20]

    Troyanchuk I O, Karpinsky D V, Bushinsky M V, Mantytskaya O S, Tereshko N V, Shut V N 2011 J. Am. Ceram. Soc. 94 4502Google Scholar

    [21]

    Wang C M, Wang J F, Gai Z G 2007 Scripta Mater. 57 789Google Scholar

    [22]

    Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar

    [23]

    Shannon R 1976 Acta Cryst. A 32 751Google Scholar

    [24]

    Wang C M, Zhao L, Liu Y, Withers R L, Zhang S, Wang Q 2016 Ceram. Int. 42 4268Google Scholar

    [25]

    Frit B, Mercurio J P 1992 J. Alloy. Compd. 188 27Google Scholar

    [26]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第161页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p161 (in Chinese)

    [27]

    Chen J, Cheng J, Dong S 2014 J. Adv. Dielect. 4 1430002Google Scholar

    [28]

    Wang C M, Zhang S J, Wang J F, Zhao M L, Wang C L 2009 Mater. Chem. Phys. 118 21Google Scholar

    [29]

    Wang Q, Wang C M, Wang J F, Zhang S 2016 Ceram. Int. 42 6993Google Scholar

  • [1] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体.  , 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [2] 彭毅, 赵国强, 邓正, 靳常青. 面向应用的新一代稀磁半导体研究进展.  , 2024, 73(1): 017503. doi: 10.7498/aps.73.20231940
    [3] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测.  , 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [4] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控.  , 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [5] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响.  , 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [6] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁 半导体研究进展.  , 2019, 68(16): 167502. doi: 10.7498/aps.68.20191114
    [7] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [8] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究.  , 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [9] 武峥, 周嘉仪, 曹艺, 马柯, 贾艳敏, 张以河. 电泳辅助制备伪1-3陶瓷/聚合物压电复合材料.  , 2014, 63(2): 027701. doi: 10.7498/aps.63.027701
    [10] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究.  , 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [11] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统.  , 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [12] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究.  , 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [13] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响.  , 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [14] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究.  , 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [15] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究.  , 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [16] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究.  , 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [17] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷.  , 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [18] 何元金, 马兴坤, 桂治轮, 李龙土. 用正电子湮没研究钙钛矿结构压电陶瓷中的点缺陷.  , 1998, 47(1): 146-153. doi: 10.7498/aps.47.146
    [19] 何元金, 李龙土. PbZrO3-PbTiO3系压电陶瓷极化效应的正电子湮没研究.  , 1983, 32(6): 697-704. doi: 10.7498/aps.32.697
    [20] 许煜寰. 压电陶瓷振子的谐振频率温度稳定性分析.  , 1978, 27(2): 146-159. doi: 10.7498/aps.27.146
计量
  • 文章访问数:  12441
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-04-17
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map