搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向应用的新一代稀磁半导体研究进展

彭毅 赵国强 邓正 靳常青

引用本文:
Citation:

面向应用的新一代稀磁半导体研究进展

彭毅, 赵国强, 邓正, 靳常青

Recent advances in application-oriented new generation diluted magnetic semiconductors

Peng Yi, Zhao Guo-Qiang, Deng Zheng, Jin Chang-Qing
PDF
HTML
导出引用
  • 稀磁半导体具有能同时调控电荷与自旋的特性, 是破解摩尔定律难题的候选材料之一. 我们团队率先提出了稀磁半导体中自旋和电荷掺杂分离的机制, 探索并研制了新一代稀磁半导体材料, 为突破经典稀磁半导体材料的制备瓶颈提供了有效解决方案. 以(Ba,K)(Zn,Mn)2As2等为代表的新一代稀磁半导体, 通过等价态的Mn掺杂引入自旋、异价态的非磁性离子掺杂引入电荷, 成功实现了230 K的居里温度, 刷新了可控型稀磁半导体的居里温度记录. 本文将重点介绍几种代表性的新一代稀磁半导体的设计与研制、新一代稀磁半导体的综合物性表征、大尺寸单晶生长以及基于单晶的安德烈夫异质结研制. 我们团队通过新一代稀磁半导体的新材料设计研制、综合物性研究、简单原型器件构建的“全链条”模式研究, 开拓了自旋电荷分别掺杂的稀磁半导体材料研究领域, 充分展现了自旋和电荷掺杂分离的新一代稀磁半导体材料潜在应用前景 .
    Diluted ferromagnetic semiconductors (DMSs) have attracted widespread attention in last decades, owing to their potential applications in spintronic devices. But classical group-III-IV, and -V elements based DMS materials, such as (Ga,Mn)As which depend on heterovalent (Ga3+, Mn2+) doping, cannot separately control carrier and spin doping, and have seriously limited chemical solubilities, which are disadvantages for further improving the Curie temperatures. To overcome these difficulties, a new-generation DMS with independent spin and charge doping have been designed and synthesized. Their representatives are I-II-V based Li(Zn,Mn)As and II-II-V based (Ba,K)(Zn,Mn)2As2. In these new materials, doping isovalent Zn2+ and Mn2+ introduces only spins, while doping heterovalent non-magnetic elements introduces only charge. As a result, (Ba,K)(Zn,Mn)2As2 achieves Curie temperature of 230 K, a new record among DMS where ferromagnetic orderings are mediated by itinerate carriers. Herein, we summarize the recent advances in the new-generation DMS materials. The discovery and synthesis of several typical new-generation DMS materials are introduced. Physical properties are studied by using muon spin relaxation, angle-resolved photoemission spectroscopy and pair distribution function. The physical and chemical pressure effects on the title materials are demonstrated. The Andreev reflection junction based on single crystal and the measurement of spin polarization are exhibited. In the end, we demonstrate the potential multiple-parameter heterojunctions with DMSs superconductors and antiferromagnetic materials.
      通信作者: 邓正, dengzheng@iphy.ac.cn ; 靳常青, Jin@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1403900)、国家自然科学基金(批准号: 11974407)、中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-030)和中国科学院青年促进会(批准号: 2020007)资助的课题.
      Corresponding author: Deng Zheng, dengzheng@iphy.ac.cn ; Jin Chang-Qing, Jin@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403900), the National Natural Science Foundation of China (Grant No. 11974407), the Project for Young Scientists in Basic Research of Chinese Academy of Sciences, China (Grant No. YSBR-030), and the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2020007).
    [1]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [2]

    Furdyna J K 1991 Diluted Magnetic Semiconductors (Washington, D. C: National Academy Press

    [3]

    Zhao J H 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [4]

    邓正, 赵国强, 靳常青 2019 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [5]

    Žutić I, Zhou T 2018 Sci. China Phys. Mech. 61 067031Google Scholar

    [6]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [7]

    Wei D 2023 J. Semicond. 44 040401Google Scholar

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [9]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [10]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [11]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [12]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [13]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [14]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(RGoogle Scholar

    [15]

    Mašek J, Kudrnovský J, Máca F, Gallagher B, Campion R, Gregory D, Jungwirth T 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [16]

    Liu X Y, Riney L, Guerra J, Powers W, Wang J S, Furdyna J K, Assaf B A 2022 J. Semicond. 43 112502Google Scholar

    [17]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A. A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [18]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [19]

    Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [20]

    Chen B J, Deng Z, Li W, Gao M, Li Z, Zhao G Q, Yu S, Wang X, Liu Q Q, Jin C Q 2016 J. Appl. Phys. 120 083902Google Scholar

    [21]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [22]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [23]

    Han W, Zhao K, Wang X, Liu Q Q, Ning F L, Deng Z, Liu Y, Zhu J, Ding C, Man H Y, Jin C Q 2013 Sci. China Phys. Mech. 56 2026Google Scholar

    [24]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(RGoogle Scholar

    [25]

    Ning F L, Man H Y, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B J 2014 Phys. Rev. B 90 085123Google Scholar

    [26]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Sci. Rep. 9 7490Google Scholar

    [27]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [28]

    Man H Y, Guo S L, Sui Y, Guo Y, Chen B J, Wang H D, Ding C, Ning F L 2015 Sci. Rep. 5 15507Google Scholar

    [29]

    Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H D, Deng Z, Jin C Q, Uemura Y J, Ning F L 2019 Phys. Rev. B 99 155201Google Scholar

    [30]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [31]

    Dong J O, Zhao X Q, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Ning F L 2022 J. Semicond. 43 072501Google Scholar

    [32]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(RGoogle Scholar

    [33]

    Yang X J, Li Y K, Shen C, Si B Q, Sun Y L, Tao Q, Cao G H, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [34]

    Chen B J, Deng Z, Li W M, Gao M R, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 AIP Adv. 6 115014Google Scholar

    [35]

    Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q, Jin C Q 2016 Chin. Phys. B 25 077503Google Scholar

    [36]

    Zhao X Q, Dong J O, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Tang Y S, Ning F L 2022 J. Semicond. 43 112501Google Scholar

    [37]

    Deng Z, Wang X, Wang M Q, Shen F, Zhang J N, Chen Y S, Feng H L, Xu J W, Peng Y, Li W M, Zhao J F, Wang X C, Valvidares M, Francoual S, Leupold O, Hu Z W, Tjeng L H, Li M R, Croft M, Zhang Y, Liu E K, He L H, Hu F X, Sun J R, Greenblatt M, Jin C Q 2023 Adv. Mater. 35 2370120Google Scholar

    [38]

    Dunsiger S R, Carlo J P, Goko T, Nieuwenhuys G, Prokscha T, Suter A, Morenzoni E, Chiba D, Nishitani Y, Tanikawa T, Matsukura F, Ohno H, Ohe J, Maekawa S, Uemura Y J 2010 Nat. Mater. 9 299Google Scholar

    [39]

    Kobayashi M, Muneta I, Takeda Y, Harada Y, Fujimori A, Krempaský J, Schmitt T, Ohya S, Tanaka M, Oshima M, Strocov V N 2014 Phys. Rev. B 89 205204Google Scholar

    [40]

    Edmonds K, van der Laan G, Panaccione G 2015 Semicond. Sci. Technol. 30 043001Google Scholar

    [41]

    Souma S, Chen L, Oszwaldowski R, Sato T, Matsukura F, Dietl T, Ohno H, Takahashi T 2016 Sci. Rep. 6 27266Google Scholar

    [42]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(RGoogle Scholar

    [43]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [44]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [45]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [46]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [47]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [48]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [49]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [50]

    Deng Z, Retuerto M, Liu S, Croft M, Stephens P W, Calder S, Li W M, Chen B J, Jin C Q, Hu Z, Li M R, Lin H J, Chan T S, Chen C T, Kim S W, Greenblatt M 2018 Chem. Mater. 30 7047Google Scholar

    [51]

    Deng Z, Kang C J, Croft M, Li W M, Shen X, Zhao J F, Yu R, Jin C Q, Kotliar G, Liu S, Tyson T A, Tappero R, Greenblatt M 2020 Angew. Chem. Int. Ed. 59 8240Google Scholar

    [52]

    Yu S, Zhao G Q, Peng Y, Zhu X H, Wang X C, Zhao J F, Cao L P, Li W M, Li Z M, Deng Z, Jin C Q 2019 APL Mater. 7 101119Google Scholar

    [53]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576Google Scholar

    [54]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

  • 图 1  (a) Li(Zn,Mn)As的晶体结构; (b) 不同Mn掺杂浓度的Li1.1(Zn1–xMnx)As磁矩-温度M(T)关系; (c) 不同Mn掺杂浓度的Li1.1(Zn1–xMnx)As的M(H)曲线[17]

    Fig. 1.  (a) Crystal structure of Li(Zn,Mn)As; (b) temperature-dependent magnetization M(T) of Li1.1(Zn1–xMnx)As with different Mn doping concentrations; (c) field-dependent magnetization M(H) of Li1.1(Zn1–xMnx)As with different Mn doping concentrations[17]

    图 2  (a) LiZnAs及其在Li过掺杂(y > 0)和欠掺杂(y < 0)条件下的电阻率-温度关系ρ(T); (b) 不同外磁场下Li1.1(Zn0.9Mn0.1)As的ρ(T)曲线, 反映了样品低温下负磁阻的特点; (c) 不同温度下Li1.1(Zn0.95Mn0.05)As的霍尔电阻率, 2 K下的图像表现出了低场下的反常霍尔效应, 同时说明了样品属于p型半导体[17]

    Fig. 2.  (a) Temperature-dependent resistivity of LiZnAs with overdoped and underdoped Li+; (b) temperature-dependent resistivity of Li1.1(Zn0.9Mn0.1)As under varying fields; (c) Hall resistivity of Li1.1(Zn0.95Mn0.05)As at different temperatures, manifesting the anomalous Hall effect at 2 K and p-type semiconductor[17].

    图 3  (a) (Ba,K)(Zn,Mn)2As2的晶体结构[18]; (b) 在FC和ZFC过程中不同K掺杂浓度下(Ba1–x, K)(Zn0.9Mn0.1)2As2M(T)曲线[18]; (c) (Ba0.7K0.3)(Zn0.85Mn0.15)2As2的磁化率-温度变化关系, 样品具有230 K的TC, 插图对应2 K下M(H)曲线[19]; (d) 2 K时不同K掺杂浓度下(Ba1–xKx)(Zn0.9Mn0.1)2As2M(H)曲线[18]

    Fig. 3.  (a) Crystal structure of (Ba,K)(Zn,Mn)2As2[18]; (b) temperature-dependent magnetization of (Ba1–xK)(Zn0.9Mn0.1)2As2 for FC and ZFC process[18]; (c) temperature-dependent magnetization of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, the inset is field-dependent magnetization at 2 K[19]; (d) field-dependent magnetization of (Ba1–xKx)(Zn0.9Mn0.1)2As2 at 2 K with different K doping concentrations[18]

    图 4  (a) 单晶(Ba0.904K0.096)(Zn0.805Mn0.195)2As2的XRD图谱, 插图为晶体结构和单晶照片; (b) 外场垂直和平行于该单晶ab面的M(T)曲线, 这说明了晶体c方向为易磁化轴; (c) 不同温度下该单晶的霍尔电阻, 外场方向垂直于ab面外[21]

    Fig. 4.  (a) XRD pattern of single crystal (Ba0.904K0.096)(Zn0.805Mn0.195)2As2, and the illustrations are crystal structure and single crystal photos; (b) temperature-dependent magnetization of this single crystal with field vertical and parallel to ab-plane, indicating the easy axis is along c axis; (c) Hall resistance of this single crystal under varying temperature with field vertical to ab-plane[21].

    图 5  (a) ZF模式下Li1.1(Zn0.95Mn0.05)As样品的μSR谱[17]; (b) ZF与WTF模式下拟合得到的Li1.1(Zn0.95Mn0.05)As样品中铁磁相体积分数[17]; (c) ZF模式下(Ba0.8K0.2)(Zn0.85Mn0.15)2As2样品的μSR谱[18]; (d) ZF与WTF模式下拟合得到的(Ba0.8K0.2)(Zn0.85Mn0.15)2As2样品中铁磁相体积分数, 插图为5 Oe外场下样品M/MS(T)图像[18]

    Fig. 5.  (a) μSR spectra of Li1.1(Zn0.95Mn0.05)As in ZF process[17]; (b) the volume fraction of ferromagnetic region in Li1.1(Zn0.95Mn0.05)As derived from ZF and WTF process[17]; (c) μSR spectra of (Ba0.8K0.2)(Zn0.85Mn0.15)2As2 in ZF process[18]; (d) the volume fraction of ferromagnetic region in (Ba0.8K0.2)(Zn0.85Mn0.15)2As2 derived from ZF and WTF process, and the illustration is a M/MS(T) image of a sample under 5 Oe field[18].

    图 6  (a) (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, Mn单质以及其他含Mn化合物的Mn L2,3边的XAS图像[42]; (b) (Ba0.904K0.096)(Zn0.805Mn0.195)2As2在非共振和共振能光子条件下获得的ARPES谱图以及对应的能量二阶导的谱图[43]

    Fig. 6.  (a) Mn L2,3-edge XAS spectra of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, Mn and other compounds containing Mn ions[42]; (b) ARPES spectra and corresponding second derivative spectra of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 taken with on- and off-resonance[43].

    图 7  (a) (Ba,K)(Zn0.85Mn0.15)2As2畸变量随温度的变化曲线; (b)含有以及未含有K掺杂情况下的(Ba1–xKx)(Zn0.85Mn0.15)2As2样品中子全散射的PDF拟合结果与实验结果的残差(垂直虚线代表最近邻Mn—Mn间距); (c) 2 K和300 K下(Ba0.7K0.3)(Zn0.85Mn0.15)2As2样品磁性PDF图像(垂线代表Mn—Mn键长); (d) 长程铁磁模型和最近邻模型拟合下磁性PDF的比例系数与温度的关系[44]

    Fig. 7.  (a) Temperature-dependent structure distortion of (Ba,K)(Zn0.85Mn0.15)2As2; (b) nuclear PDF fit residuals for (Ba1–xKx)(Zn0.85Mn0.15)2As2 (vertical dashed line represents the nearest neighbor Mn—Mn distance); (c) magnetic PDF patterns for (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 at 2 K and 300 K (vertical line represents the Mn—Mn bond length); (d) magnetic PDF scale factors from LRO model and NN model at varying temperatures [44].

    图 8  (Ba0.8K0.2)(Zn0.95Mn0.05)2As2在压力作用下晶格常数的变化. 左下插图为层间As—As间距随压力的变化, 右上插图为As—Zn—As夹角随压力的变化[49]

    Fig. 8.  Pressure-dependent lattice parameters of (Ba0.8K0.2)(Zn0.95Mn0.05)2As2. Lower-left inset is the pressure-dependent inter-layered As—As distance and upper-right inset is the pressure-dependent As—Zn—As bond angle[49].

    图 9  (a) (Ca,Na)(Cd,Mn)2As2晶体结构; (b) 在(Sr,Na)(Cd,Mn)2As2和(Ca,Na)(Cd,Mn)2As2中的CdAs四面体Cd—As键长与As—Cd—As键角的对比; (c) (Sr,Na)(Cd,Mn)2As2样品的M(T)曲线; (d) (Ca,Na)(Cd,Mn)2As2样品的M(T)曲线, 插图为磁化率倒数-温度关系[20,52]

    Fig. 9.  (a) Crystal structure of (Ca,Na)(Cd,Mn)2As2; (b) comparison of Cd—As distance and As—Cd—As bond angle between (Sr,Na)(Cd,Mn)2As2 and (Ca,Na)(Cd,Mn)2As2; (c) temperature-dependent magnetization of (Sr,Na)(Cd,Mn)2As2; (d) temperature-dependent magnetization of (Ca,Na)(Cd,Mn)2As2, the inset is the Curie-Wiess fitting [20,52].

    图 10  (a) 零偏压下归一化G/G0随温度的变化关系, 插图为Pb/(Ba,K)(Zn,Mn)2As2安德烈夫反射结示意图; (b)不同温度下Pb/(Ba,K)(Zn,Mn)2As2安德烈夫反射谱以及在修正BTK理论模型下拟合的结果[21]

    Fig. 10.  (a) Temperature-dependent normalized G/G0 and the sketch of the Pb/(Ba,K)(Zn,Mn)2As2 Andreev reflection junction; (b) Andreev reflection spectra of Pb/(Ba,K)(Zn,Mn)2As2 junction and the modified BTK fit at different temperature[21].

    图 11  (a) Li(Zn,Mn)As, LiMnAs和LiFeAs的晶体结构和晶胞参数的对比; (b) (Ba,K)Fe2As2, (Ba,K)(Zn,Mn)2As2和BaMn2As2的晶体结构和晶胞参数的对比[17]

    Fig. 11.  (a) Comparison of crystal structure and lattice parameter among Li(Zn,Mn)As, LiMnAs and LiFeAs; (b) comparison of crystal structure and lattice parameter among (Ba,K)Fe2As2, (Ba,K)(Zn,Mn)2As2 and BaMn2As2[17].

    图 12  稀磁半导体发展路线图[1]

    Fig. 12.  Roadmap of DMS[1].

    Baidu
  • [1]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [2]

    Furdyna J K 1991 Diluted Magnetic Semiconductors (Washington, D. C: National Academy Press

    [3]

    Zhao J H 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [4]

    邓正, 赵国强, 靳常青 2019 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [5]

    Žutić I, Zhou T 2018 Sci. China Phys. Mech. 61 067031Google Scholar

    [6]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [7]

    Wei D 2023 J. Semicond. 44 040401Google Scholar

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [9]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [10]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [11]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [12]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [13]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [14]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(RGoogle Scholar

    [15]

    Mašek J, Kudrnovský J, Máca F, Gallagher B, Campion R, Gregory D, Jungwirth T 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [16]

    Liu X Y, Riney L, Guerra J, Powers W, Wang J S, Furdyna J K, Assaf B A 2022 J. Semicond. 43 112502Google Scholar

    [17]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A. A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [18]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [19]

    Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [20]

    Chen B J, Deng Z, Li W, Gao M, Li Z, Zhao G Q, Yu S, Wang X, Liu Q Q, Jin C Q 2016 J. Appl. Phys. 120 083902Google Scholar

    [21]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [22]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [23]

    Han W, Zhao K, Wang X, Liu Q Q, Ning F L, Deng Z, Liu Y, Zhu J, Ding C, Man H Y, Jin C Q 2013 Sci. China Phys. Mech. 56 2026Google Scholar

    [24]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(RGoogle Scholar

    [25]

    Ning F L, Man H Y, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B J 2014 Phys. Rev. B 90 085123Google Scholar

    [26]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Sci. Rep. 9 7490Google Scholar

    [27]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [28]

    Man H Y, Guo S L, Sui Y, Guo Y, Chen B J, Wang H D, Ding C, Ning F L 2015 Sci. Rep. 5 15507Google Scholar

    [29]

    Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H D, Deng Z, Jin C Q, Uemura Y J, Ning F L 2019 Phys. Rev. B 99 155201Google Scholar

    [30]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [31]

    Dong J O, Zhao X Q, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Ning F L 2022 J. Semicond. 43 072501Google Scholar

    [32]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(RGoogle Scholar

    [33]

    Yang X J, Li Y K, Shen C, Si B Q, Sun Y L, Tao Q, Cao G H, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [34]

    Chen B J, Deng Z, Li W M, Gao M R, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 AIP Adv. 6 115014Google Scholar

    [35]

    Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q, Jin C Q 2016 Chin. Phys. B 25 077503Google Scholar

    [36]

    Zhao X Q, Dong J O, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Tang Y S, Ning F L 2022 J. Semicond. 43 112501Google Scholar

    [37]

    Deng Z, Wang X, Wang M Q, Shen F, Zhang J N, Chen Y S, Feng H L, Xu J W, Peng Y, Li W M, Zhao J F, Wang X C, Valvidares M, Francoual S, Leupold O, Hu Z W, Tjeng L H, Li M R, Croft M, Zhang Y, Liu E K, He L H, Hu F X, Sun J R, Greenblatt M, Jin C Q 2023 Adv. Mater. 35 2370120Google Scholar

    [38]

    Dunsiger S R, Carlo J P, Goko T, Nieuwenhuys G, Prokscha T, Suter A, Morenzoni E, Chiba D, Nishitani Y, Tanikawa T, Matsukura F, Ohno H, Ohe J, Maekawa S, Uemura Y J 2010 Nat. Mater. 9 299Google Scholar

    [39]

    Kobayashi M, Muneta I, Takeda Y, Harada Y, Fujimori A, Krempaský J, Schmitt T, Ohya S, Tanaka M, Oshima M, Strocov V N 2014 Phys. Rev. B 89 205204Google Scholar

    [40]

    Edmonds K, van der Laan G, Panaccione G 2015 Semicond. Sci. Technol. 30 043001Google Scholar

    [41]

    Souma S, Chen L, Oszwaldowski R, Sato T, Matsukura F, Dietl T, Ohno H, Takahashi T 2016 Sci. Rep. 6 27266Google Scholar

    [42]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(RGoogle Scholar

    [43]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [44]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [45]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [46]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [47]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [48]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [49]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [50]

    Deng Z, Retuerto M, Liu S, Croft M, Stephens P W, Calder S, Li W M, Chen B J, Jin C Q, Hu Z, Li M R, Lin H J, Chan T S, Chen C T, Kim S W, Greenblatt M 2018 Chem. Mater. 30 7047Google Scholar

    [51]

    Deng Z, Kang C J, Croft M, Li W M, Shen X, Zhao J F, Yu R, Jin C Q, Kotliar G, Liu S, Tyson T A, Tappero R, Greenblatt M 2020 Angew. Chem. Int. Ed. 59 8240Google Scholar

    [52]

    Yu S, Zhao G Q, Peng Y, Zhu X H, Wang X C, Zhao J F, Cao L P, Li W M, Li Z M, Deng Z, Jin C Q 2019 APL Mater. 7 101119Google Scholar

    [53]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576Google Scholar

    [54]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

  • [1] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体.  , 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [2] 李春雷, 郑军, 王小明, 徐燕. 光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究.  , 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [3] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测.  , 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [4] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性.  , 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [5] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁 半导体研究进展.  , 2019, 68(16): 167502. doi: 10.7498/aps.68.20191114
    [6] 侯清玉, 许镇潮, 乌云, 赵二俊. Cu掺杂ZnO稀磁半导体磁电性能影响的模拟计算.  , 2015, 64(16): 167201. doi: 10.7498/aps.64.167201
    [7] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究.  , 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [8] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [9] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [10] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [11] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体.  , 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [12] 彭先德, 朱涛, 王芳卫. Co掺杂的ZnO稀磁半导体块体的退火热处理研究.  , 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [13] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质.  , 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [14] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [15] 杜 坚, 张 鹏, 刘继红, 李金亮, 李玉现. 含δ势垒的铁磁/半导体/铁磁异质结中的自旋输运和渡越时间.  , 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [16] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制.  , 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [17] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [18] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算.  , 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [19] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变.  , 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应.  , 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  4077
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2023-12-19
  • 上网日期:  2024-01-02
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map