-
本文以ZnCl2, CrCl3. 6H2O和氨水缓冲溶液为原料, 在4T脉冲磁场下水热法制备了Cr掺杂ZnO稀磁半导体晶体, 通过X射线衍射分析、扫描电子显微镜观察及采用振动样品磁强计进行磁性分析等, 探讨了脉冲磁场对其微观结构及磁性能的影响. 结果表明: Cr掺杂ZnO稀磁半导体晶体仍保持ZnO的六方纤锌矿结构, 脉冲磁场具有促进晶粒生长及取向排列的作用, 4T脉冲磁场条件下合成的Cr掺杂ZnO稀磁半导体具有良好的室温铁磁性, 其饱和磁化强度(Ms)为0.068 emu/g, 而无脉冲磁场情况下制备的样品室温下呈顺磁性, 并且, 脉冲磁场下制备将稀磁半导体的居里温度提高了16 K.In this study, zinc chloride, chromic chloride, ammonium hydroxide and ammonium chloride are used as the source materials to prepare the crystalline Cr-doped ZnO diluted magnetic semiconductor by the hydrothermal method under a 4-T pulsed magnetic field. The structures and the morphologies of the samples are characterized by X-ray diffraction and scanning electron microscope. The magnetic analysis of the specimens is performed by vibrating sample magnetometer. The effects of pulsed magnetic field on the microstructure and the magnetic properties of the Cr-doped ZnO are discussed. The result indicates that all the samples still have hexagonal wurtzite structures. The pulsed magnetic field is conducive to promote the crystal growth orientation. The sample fabricated under pulsed magnetic field exhibits good room temperature ferromagnetism. The saturation magnetization is 0.068 emu/g. However, the sample synthesized without magnetic field shows paramagnetism at room temperature. The Curie temperature (Tc) of the Cr-doped ZnO is increased by 16 K through the pulsed magnetic field processing.
-
Keywords:
- pulsed magnetic field /
- hydrothermal /
- Cr-doped ZnO /
- diluted magnetic semiconductor
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S von, RoukesML, Chtchelkanova A Y, Treger DM2001 Science 294 1488
[2] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854
[3] Chiba D, Yamanouchi M, Matsukura F, Ohno H 2003 Science 301 943
[4] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
[5] Sato K, Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334
[6] Liu X C, Shi E W, Song L X, Zhang H W, Chen Z Z 2006 Acta Phys. Sin. 55 2557 (in Chinese) [刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战 2006 textbf 55 2557]
[7] Yang J J, Fang Q Q,Wang B M,Wang C P, Zhou J, Li Y, Liu Y M, Lü Q R 2007 Acta Phys. Sin. 56 1116 (in Chinese) [杨景景, 方庆清, 王保明, 王翠平, 周军, 李雁, 刘艳美, 吕庆荣 2007 textbf 56 1116]
[8] Yu Z, Li X, Long X, Cheng XW,Wang J Y, Liu Y, CaoMS,Wang F C 2008 Acta Phys. Sin. 57 4539 (in Chinese) [于宙, 李祥, 龙雪, 程兴旺, 王晶云, 刘颖, 曹茂盛, 王富耻 2008 textbf 57 4539]
[9] Schneider L, Zaitsev S V, Jin W, Kompch A, Winterer M, Acet M, Bacher G 2009 Nanotechnology 20 135604
[10] J, Liu X Y, Yang Y T, Wei M B 2009 J. Alloy. Compd. 486 835
[11] Elanchezhiyan J, Bhuvana K P, Gopalakrishnan N, Shin B C, Lee W J, Balasubramanian T 2009 J. Alloy. Compd. 478 45
[12] Hu Y M, Hsu CW, Wang C Y, Lee S S, Wang S J, Han T C, Chou W Y 2009 Scripta Mater. 61 1028
[13] Zhuge L J, Wu X M, Wu Z F, Chen X M, Meng Y D 2009 Scripta Mater. 60 214
[14] Satoh I, Kobayashi T 2003 Appl. Surf. Sci. 216 603
[15] Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308
[16] Wang B Q, Iqbal J, Shan X D, Huang G W, Fu H G, Yu R H, Yu D P 2009 Mater. Chem. Phys. 113 103
[17] Miao H Y, Li H Q, Tan G Q, An B J, Wei Y X 2008 J. Inorg. Mater. 23 673 (in Chinese) [苗鸿雁, 李慧勤, 谈国强, 安百江, 魏艳想 2008 无机材料学报 textbf 23 673]
[18] Chu D W, Zeng Y P, Jiang D L 2007 J. Phys. Chem. C 111 5893
[19] Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751
[20] Huang J, Zhu M Y, Li Y, Yang T, Li Y B, Jin H M, Hu Y M 2010 J. Nanosci. Nanotechno. 10 7303
[21] Yang T, Li Y, Zhu M Y, Li Y B, Huang J, Jin H M, Hu Y M 2010 Mater. Sci. Eng. B 170 129
[22] Singhal R K, Dhawan M S, Gaur S K, Dolia S N, Kumar S, Shripathi T, Deshpande U P, Xing Y T, Saitovitch E, Garg K B 2009 J. Alloy. Compd. 477 379
-
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S von, RoukesML, Chtchelkanova A Y, Treger DM2001 Science 294 1488
[2] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854
[3] Chiba D, Yamanouchi M, Matsukura F, Ohno H 2003 Science 301 943
[4] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
[5] Sato K, Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334
[6] Liu X C, Shi E W, Song L X, Zhang H W, Chen Z Z 2006 Acta Phys. Sin. 55 2557 (in Chinese) [刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战 2006 textbf 55 2557]
[7] Yang J J, Fang Q Q,Wang B M,Wang C P, Zhou J, Li Y, Liu Y M, Lü Q R 2007 Acta Phys. Sin. 56 1116 (in Chinese) [杨景景, 方庆清, 王保明, 王翠平, 周军, 李雁, 刘艳美, 吕庆荣 2007 textbf 56 1116]
[8] Yu Z, Li X, Long X, Cheng XW,Wang J Y, Liu Y, CaoMS,Wang F C 2008 Acta Phys. Sin. 57 4539 (in Chinese) [于宙, 李祥, 龙雪, 程兴旺, 王晶云, 刘颖, 曹茂盛, 王富耻 2008 textbf 57 4539]
[9] Schneider L, Zaitsev S V, Jin W, Kompch A, Winterer M, Acet M, Bacher G 2009 Nanotechnology 20 135604
[10] J, Liu X Y, Yang Y T, Wei M B 2009 J. Alloy. Compd. 486 835
[11] Elanchezhiyan J, Bhuvana K P, Gopalakrishnan N, Shin B C, Lee W J, Balasubramanian T 2009 J. Alloy. Compd. 478 45
[12] Hu Y M, Hsu CW, Wang C Y, Lee S S, Wang S J, Han T C, Chou W Y 2009 Scripta Mater. 61 1028
[13] Zhuge L J, Wu X M, Wu Z F, Chen X M, Meng Y D 2009 Scripta Mater. 60 214
[14] Satoh I, Kobayashi T 2003 Appl. Surf. Sci. 216 603
[15] Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308
[16] Wang B Q, Iqbal J, Shan X D, Huang G W, Fu H G, Yu R H, Yu D P 2009 Mater. Chem. Phys. 113 103
[17] Miao H Y, Li H Q, Tan G Q, An B J, Wei Y X 2008 J. Inorg. Mater. 23 673 (in Chinese) [苗鸿雁, 李慧勤, 谈国强, 安百江, 魏艳想 2008 无机材料学报 textbf 23 673]
[18] Chu D W, Zeng Y P, Jiang D L 2007 J. Phys. Chem. C 111 5893
[19] Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751
[20] Huang J, Zhu M Y, Li Y, Yang T, Li Y B, Jin H M, Hu Y M 2010 J. Nanosci. Nanotechno. 10 7303
[21] Yang T, Li Y, Zhu M Y, Li Y B, Huang J, Jin H M, Hu Y M 2010 Mater. Sci. Eng. B 170 129
[22] Singhal R K, Dhawan M S, Gaur S K, Dolia S N, Kumar S, Shripathi T, Deshpande U P, Xing Y T, Saitovitch E, Garg K B 2009 J. Alloy. Compd. 477 379
计量
- 文章访问数: 8138
- PDF下载量: 913
- 被引次数: 0