-
Surface plasmon polaritons (SPP) are widely investigated in many fields because of the surface confinement of their electrocmagnetic field. Grating coupling is one of the methods to achieve the momentum match between light in free space and the surface plasmon to excite SPP. Because of the nature of the grating coupling, its parameters will greatly affect the coupling efficiency. Varying the grating modulation depth but keeping other parameters unchanged, we investigate the reflection spectra of onedimensional rectangle metallic grating by rigorous coupled-wave theory under the irradiation of incident light of 780 and 1500 nm in wavelength, respectively. According to Fano theory, the reflectance of metallic grating is the result of interference of two components, i.e., a directly reflected mode from the metal surface and a resonance radiation mode coupled out by the SPP propagating along the grating surface. We derive the Fano-type expression to describe the reflection spectra, and explain the contributions of directly reflected mode, SPP resonance radiation mode and the interference between these two effects. Near-filed electromagnetic distribution on metallic grating surface proves that the Fano-type expression is accurate enough to reflect the nature of the interference between the direct and radiation modes. Most importantly, our results from the expressions suggest that in some special grating condition, the metallic grating almost completely suppresses the SPP radiation propagating from grating to free space, which means that the energy of light can be completely trapped inside the grating. The phenomenon can be employed in designing light trapping device.
-
Keywords:
- surface plasmon polaritons /
- grating coupling /
- Fano theory /
- light trapping
[1] Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto E, Brolo A, Gordon R, Sinton D 2009 Anal. Chem. 81 4308
[2] Atsushi O, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407
[3] Fu Y, Li K, Kong F 2008 PIER 82 109
[4] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
[5] Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 62 135201]
[6] Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 62 037302]
[7] Hu C K 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [胡昌奎 2010 博士学位论文(武汉: 华中科技大学)]
[8] Wang L, Cao J X, L Y, Liu L, Du Y C, Wang J 2012 Chin. Phys. B 21 017301
[9] Chen Y Y, Qin L, Tong C Z, Wang L J 2013 Acta Phys. Sin. 62 167301 (in Chinese) [陈泳屹, 秦莉, 佟存柱, 王立军 2013 62 167301]
[10] Anttu N, Guan Z Q, Hakanson U, Xu H X, Xu H Q 2012 Appl. Phys. Lett. 100 091111
[11] Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y 2009 Opt. Rev. 16 216
[12] Xiao Y F, Zhang W P, Huang H H, Pang L 2013 Chin. J. Lasers 40 1114001 (in Chinese) [肖钰斐, 张卫平, 黄海华, 庞霖 2013 中国激光 40 1114001]
[13] Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P, Song G F 2013 Chin. Phys. B 22 104213
[14] Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804
[15] Li J Y, Gan L, Li Z Y 2013 Chin. Phys. B 22 117302
[16] Liu H, Lalanne P 2008 Nature 452 728
[17] Liu H, Lalanne P 2013 Opt. Express 21 16753
[18] Fano U 1961 Phys. Rev. 124 1866
[19] Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331
[20] Pang L, Chen H M, Wang L, Beechem J M, Fainman Y 2009 Opt. Express 17 14700
-
[1] Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto E, Brolo A, Gordon R, Sinton D 2009 Anal. Chem. 81 4308
[2] Atsushi O, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407
[3] Fu Y, Li K, Kong F 2008 PIER 82 109
[4] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
[5] Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 62 135201]
[6] Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 62 037302]
[7] Hu C K 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [胡昌奎 2010 博士学位论文(武汉: 华中科技大学)]
[8] Wang L, Cao J X, L Y, Liu L, Du Y C, Wang J 2012 Chin. Phys. B 21 017301
[9] Chen Y Y, Qin L, Tong C Z, Wang L J 2013 Acta Phys. Sin. 62 167301 (in Chinese) [陈泳屹, 秦莉, 佟存柱, 王立军 2013 62 167301]
[10] Anttu N, Guan Z Q, Hakanson U, Xu H X, Xu H Q 2012 Appl. Phys. Lett. 100 091111
[11] Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y 2009 Opt. Rev. 16 216
[12] Xiao Y F, Zhang W P, Huang H H, Pang L 2013 Chin. J. Lasers 40 1114001 (in Chinese) [肖钰斐, 张卫平, 黄海华, 庞霖 2013 中国激光 40 1114001]
[13] Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P, Song G F 2013 Chin. Phys. B 22 104213
[14] Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804
[15] Li J Y, Gan L, Li Z Y 2013 Chin. Phys. B 22 117302
[16] Liu H, Lalanne P 2008 Nature 452 728
[17] Liu H, Lalanne P 2013 Opt. Express 21 16753
[18] Fano U 1961 Phys. Rev. 124 1866
[19] Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331
[20] Pang L, Chen H M, Wang L, Beechem J M, Fainman Y 2009 Opt. Express 17 14700
Catalog
Metrics
- Abstract views: 6829
- PDF Downloads: 416
- Cited By: 0