搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波频段表面等离子激元波导滤波器的实验研究

王五松 张利伟 冉佳 张冶文

引用本文:
Citation:

微波频段表面等离子激元波导滤波器的实验研究

王五松, 张利伟, 冉佳, 张冶文

Experimental studies of the surface plasmon polaritons waveguide filter in microwave band

Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen
PDF
导出引用
  • 基于理论分析, 实验研究了二维磁单负材料/双正材料/磁单负材料表面等离子波导的滤波效应. 研究表明, 该波导结构具有低通滤波性质, 引入分支缺陷之后, 由于谐振效应该波导具有带阻滤波效应. 分支缺陷相当于亚波长谐振腔, 谐振腔的长度决定带阻滤波器的中心频率, 而中心频率几乎不受缺陷位置的影响; 滤波器透射率下降的幅度由耦合距离决定. 通过引入谐振腔及改变谐振腔的长度、数量以及耦合间距等参数, 可以实现可调节的表面等离子波导滤波器. 实验结果与理论分析符合得很好, 该性质将在可调的单通道或多通道带阻滤波器件中具有潜在的应用价值.
    Based on theoretical analysis, in this paper studied are the low pass and band stop filter effects of the μ-negative materials/double positive materials/μ-negative materials (MNG-DPS-MNG) surface plasmon polaritons waveguide with branch defect. The research results show that the defect is equivalent to a sub wavelength resonator. The central frequency of the band stop filter is determined by the resonator length and it is independent of the position where the resonator is located in the MNG region. The transmission dips of the waveguide are closely related to the coupling distance. So the filter characteristics of the surface plasmon polariton waveguide can be adjusted by changing the resonator length and number and the coupling distance. The experimental results are in good agreement with simulation results. These properties will have potential application value in the tunable single channel or multi-channel band stop filters.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB922001);国家自然科学基金(批准号:10904032);河南省高等学校青年骨干教师资助计划项目(批准号:2012GGJS-060)和河南理工大学杰出青年基金项目(批准号:J2013-09)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant No. 10904032), the Excellent Youth Teachers Program of Universities in Henan Province, China (Grant No. 2012GGJS-060), and Henan Polytechnic University Program for Distinguished Young Scholars, China (Grant No. J2013-09).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [3]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [4]

    Stegeman G I, Wallis R F, Maradudin A A 1983 Opt. Lett. 8 386

    [5]

    Veronis G, Fan S H 2005 Appl. Phys. Lett. 87 131102

    [6]

    Han Z, Liu L, Erik F 2006 Opt. Commun. 259 690

    [7]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [8]

    Zhai G H, Hong W, Wu K, Wei J 2010 Acta Electron. Sin. 38 825 (in Chinese) [翟国华, 洪伟, 吴柯, 韦婧 2010 电子学报 38 825]

    [9]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [10]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [11]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [12]

    Liu L, Hao X, Ye Y T, Liu J X, Chen Z L, Song Y C, Luo Y, Zhang J, Tan L 2012 Opt. Commun. 285 2558

    [13]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [14]

    Lu W T, Savo S, Casse B D F, Sridhar S 2009 Microw. Opt. Techn. Lett. 51 2705

    [15]

    Zhang L W, Xu J P, He L, Qiao W T 2010 Acta Phys. Sin. 59 7863 (in Chinese) [张利伟, 许静平, 赫丽, 乔文涛 2010 59 7863]

    [16]

    Iyer A K, Kremer P C, Eleftheriade G V 2003 Opt. Express 11 696

    [17]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [18]

    Ruppin R 2001 J. Phys.: Condens. Matter 13 1811

    [19]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]

    [20]

    Lee P H, Lan Y C 2010 Plasmonics 5 417

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [3]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [4]

    Stegeman G I, Wallis R F, Maradudin A A 1983 Opt. Lett. 8 386

    [5]

    Veronis G, Fan S H 2005 Appl. Phys. Lett. 87 131102

    [6]

    Han Z, Liu L, Erik F 2006 Opt. Commun. 259 690

    [7]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [8]

    Zhai G H, Hong W, Wu K, Wei J 2010 Acta Electron. Sin. 38 825 (in Chinese) [翟国华, 洪伟, 吴柯, 韦婧 2010 电子学报 38 825]

    [9]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [10]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [11]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [12]

    Liu L, Hao X, Ye Y T, Liu J X, Chen Z L, Song Y C, Luo Y, Zhang J, Tan L 2012 Opt. Commun. 285 2558

    [13]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [14]

    Lu W T, Savo S, Casse B D F, Sridhar S 2009 Microw. Opt. Techn. Lett. 51 2705

    [15]

    Zhang L W, Xu J P, He L, Qiao W T 2010 Acta Phys. Sin. 59 7863 (in Chinese) [张利伟, 许静平, 赫丽, 乔文涛 2010 59 7863]

    [16]

    Iyer A K, Kremer P C, Eleftheriade G V 2003 Opt. Express 11 696

    [17]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [18]

    Ruppin R 2001 J. Phys.: Condens. Matter 13 1811

    [19]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]

    [20]

    Lee P H, Lan Y C 2010 Plasmonics 5 417

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元.  , 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性.  , 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [3] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器.  , 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [4] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性.  , 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [5] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻.  , 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [6] 梁振江, 刘海霞, 牛燕雄, 尹贻恒. 基于谐振腔增强型石墨烯光电探测器的设计及 性能分析.  , 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [7] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒. THz谐振腔型石墨烯光电探测器的设计.  , 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [8] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究.  , 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [9] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响.  , 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [10] 庄煜阳, 周雯, 季珂, 陈鹤鸣. 一种双反射壁型二维光子晶体窄带滤波器.  , 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [11] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性.  , 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [13] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究.  , 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [14] 王五松, 张利伟, 张冶文, 方恺. 基于二维特异材料波导的表面电磁波的慢波实验研究.  , 2013, 62(2): 024203. doi: 10.7498/aps.62.024203
    [15] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究.  , 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [16] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [17] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究.  , 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波.  , 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [19] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器.  , 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [20] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器.  , 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
计量
  • 文章访问数:  6654
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map