搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型

刘飞飞 魏守水 魏长智 任晓飞

引用本文:
Citation:

基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型

刘飞飞, 魏守水, 魏长智, 任晓飞

Use of velocity source immersed boundary-lattice Boltzmann method to study bionic micro-fluidic driving model

Liu Fei-Fei, Wei Shou-Shui, Wei Chang-Zhi, Ren Xiao-Fei
PDF
导出引用
  • 浸入边界–晶格波尔兹曼法在流固耦合等复杂的流体系统中得到广泛的应用. 本文采用基于速度源修正的浸入边界–晶格玻尔兹曼法,建立了仿生微流体驱动模型,创新性地将波动弹性体的速度引入晶格玻尔兹曼方程,避免了传统浸入边界–晶格玻尔兹曼法中浸入边界速度-结构变形-力之间的转换,提高了计算效率和准确率. 研究了行波波动细丝对流场内流动速度和压力的影响,重点分析了驱动模型各项参数对微流体的驱动效果. 研究结果表明:细丝长度、频率、振幅的增加引起出口处流量的增加;波长、流体粘滞系数以及细丝位置与出口处流量呈复杂的非线性关系.
    Bionic micro-fluidic driving model is built in this paper based on the velocity source immersed boundary-lattice Boltzmann method. In order to avoid the transformation between the velocity and the force, this method introduces an immersed boundary into the lattice Boltzmann equation as the velocity source, which can reduce the computational expense. Firstly, the effects of the traveling waves produced by the elastic filament on the velocity and pressure of the flow field are studied. Secondly, the paper focuses on the influences of parameters on the flow rate. Results show that the flow rate increases with increasing frequency, wave amplitude, and filament length. Relationships between the flow rate and the other parameters of the model, such as the position of filament, wavelength, and kinematic viscosity of the fluid, are shown to be nonlinear and complicated.
    • 基金项目: 国家自然科学基金(批准号:51075243,11002083)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51075243, 11002083).
    [1]

    Liu Y L, Zhu J, Luo X S 2009 Chin. Phys. B 18 3772

    [2]

    Jessy B R, Prashant K J 2013 Chem. Soc. Rev. 42 89

    [3]

    Mandy L Y S, Vincent G, Joseph C L, Wong P K 2013 Nanotechnology Magazine IEEE 7 31

    [4]

    Wang C H, Lee G B 2005 Biosens. Bioelectron. 21 419

    [5]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [6]

    Li Z G, Liu Q S, Liu R, Hu W, Deng X Y 2009 Chin. Phys. Lett. 26 114701

    [7]

    Laser D, Santiago J 2004 J. Micronech Microeng 14 35

    [8]

    Iverson B, Garimella S V 2008 Microfluid Nanofluid 5 16131

    [9]

    Liu D, Garimella S V 2009 Nanosc Microsc Therm 13 109

    [10]

    Zhong S, Moored KW, Pinedo V, Garcia-Gonzalez J, Smits A J 2013 Exp. Therm. Fluid Sci. 46 1

    [11]

    Purcell E 1977 Amer. J. Phys. 45 3

    [12]

    Wolgemuth C W, Powers T R, Goldstein R E 2000 Phys. Rev. Lett. 84 1623

    [13]

    Smith D J, Gaffney E A, Blake J R, Kirkman-Brown J C 2009 J. Fluid. Mech. 621 289

    [14]

    Tabak A F, Yesilyurt S 2008 Microfluid Nanofluid 4 489

    [15]

    Koz M, Yesilyurt S 2008 Proc. SPIE 6886, Microfluidics, BioMEMS, and Medical Microsystems VI San Jose, Cananda, January 19-22, 2008 p786

    [16]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703(in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 024703]

    [17]

    Cao Z H, Luo K, Yi H L, Tan H P 2014 Int. J. Heat. Mass. Tran. 74 60

    [18]

    Michele L R, Claudia A, Valentina L, Giampiero S, Reinhard H 2012 Int. J. Numer. Meth. Fl. 70 1048

    [19]

    Ollila S, Denniston C, Karttunen M, Nissila T 2011 J. Chem. Phys. 134 064902

    [20]

    Fallah K, Khaya M, Hossein BM, Ghaderi A, Fattahi E 2012 J. Non-Newton Fluid 177 1

    [21]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703(in Chinese) [毛威, 郭照立, 王亮 2013 62 084703]

    [22]

    Yang T Z, Ji S D, Yang X D, Fang B 2014 Int. J. Eng. Sci. 76 47

    [23]

    Koido T, Furusawa T, Moriyama K 2008 J. Power Sour. 175 127

    [24]

    Navidbakhsh M, Rezazadeh M 2012 Scientia Iranica 19 1329

    [25]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701(in Chinese) [何郁波, 林晓艳, 董晓亮 2013 62 194701]

    [26]

    Jung R T, Hasan M K 2012 IEEE OCEANS Yeosu, Korea, May 21-24, 2012 p1

  • [1]

    Liu Y L, Zhu J, Luo X S 2009 Chin. Phys. B 18 3772

    [2]

    Jessy B R, Prashant K J 2013 Chem. Soc. Rev. 42 89

    [3]

    Mandy L Y S, Vincent G, Joseph C L, Wong P K 2013 Nanotechnology Magazine IEEE 7 31

    [4]

    Wang C H, Lee G B 2005 Biosens. Bioelectron. 21 419

    [5]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [6]

    Li Z G, Liu Q S, Liu R, Hu W, Deng X Y 2009 Chin. Phys. Lett. 26 114701

    [7]

    Laser D, Santiago J 2004 J. Micronech Microeng 14 35

    [8]

    Iverson B, Garimella S V 2008 Microfluid Nanofluid 5 16131

    [9]

    Liu D, Garimella S V 2009 Nanosc Microsc Therm 13 109

    [10]

    Zhong S, Moored KW, Pinedo V, Garcia-Gonzalez J, Smits A J 2013 Exp. Therm. Fluid Sci. 46 1

    [11]

    Purcell E 1977 Amer. J. Phys. 45 3

    [12]

    Wolgemuth C W, Powers T R, Goldstein R E 2000 Phys. Rev. Lett. 84 1623

    [13]

    Smith D J, Gaffney E A, Blake J R, Kirkman-Brown J C 2009 J. Fluid. Mech. 621 289

    [14]

    Tabak A F, Yesilyurt S 2008 Microfluid Nanofluid 4 489

    [15]

    Koz M, Yesilyurt S 2008 Proc. SPIE 6886, Microfluidics, BioMEMS, and Medical Microsystems VI San Jose, Cananda, January 19-22, 2008 p786

    [16]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703(in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 024703]

    [17]

    Cao Z H, Luo K, Yi H L, Tan H P 2014 Int. J. Heat. Mass. Tran. 74 60

    [18]

    Michele L R, Claudia A, Valentina L, Giampiero S, Reinhard H 2012 Int. J. Numer. Meth. Fl. 70 1048

    [19]

    Ollila S, Denniston C, Karttunen M, Nissila T 2011 J. Chem. Phys. 134 064902

    [20]

    Fallah K, Khaya M, Hossein BM, Ghaderi A, Fattahi E 2012 J. Non-Newton Fluid 177 1

    [21]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703(in Chinese) [毛威, 郭照立, 王亮 2013 62 084703]

    [22]

    Yang T Z, Ji S D, Yang X D, Fang B 2014 Int. J. Eng. Sci. 76 47

    [23]

    Koido T, Furusawa T, Moriyama K 2008 J. Power Sour. 175 127

    [24]

    Navidbakhsh M, Rezazadeh M 2012 Scientia Iranica 19 1329

    [25]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701(in Chinese) [何郁波, 林晓艳, 董晓亮 2013 62 194701]

    [26]

    Jung R T, Hasan M K 2012 IEEE OCEANS Yeosu, Korea, May 21-24, 2012 p1

  • [1] 辛建建, 陈振雷, 石凡, 石伏龙. 基于直角网格法的单个和阵列布置下柔性水翼绕流数值模拟.  , 2020, 69(4): 044702. doi: 10.7498/aps.69.20191711
    [2] 魏峰, 金亮, 柳军, 丁峰, 郑新萍. 基于一种改进的虚拟单元法模拟包含静止/运动边界的流动问题.  , 2019, 68(12): 124703. doi: 10.7498/aps.68.20190013
    [3] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响.  , 2018, 67(21): 218701. doi: 10.7498/aps.67.20180305
    [4] 辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动.  , 2017, 66(4): 044704. doi: 10.7498/aps.66.044704
    [5] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究.  , 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [6] 冯德山, 杨道学, 王珣. 插值小波尺度法探地雷达数值模拟及四阶Runge Kutta辅助微分方程吸收边界条件.  , 2016, 65(23): 234102. doi: 10.7498/aps.65.234102
    [7] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法.  , 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [8] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究.  , 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [9] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合.  , 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [10] 杨青, 曹曙阳, 刘十一. 基于浸入式边界方法的串联双矩形柱绕流数值模拟.  , 2014, 63(21): 214702. doi: 10.7498/aps.63.214702
    [11] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究.  , 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [12] 许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉. 快速多极边界元法用于扩散光学断层成像研究.  , 2013, 62(10): 104204. doi: 10.7498/aps.62.104204
    [13] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究.  , 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [14] 李善德, 黄其柏, 李天匀. 新的对角形式快速多极边界元法求解声学Helmholtz方程.  , 2012, 61(6): 064301. doi: 10.7498/aps.61.064301
    [15] 秦义校, 程玉民. 弹性力学的重构核粒子边界无单元法.  , 2006, 55(7): 3215-3222. doi: 10.7498/aps.55.3215
    [16] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法.  , 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [17] 杨世平, 牛海燕, 田钢, 袁国勇, 张闪. 用驱动参量法实现混沌系统的同步.  , 2001, 50(4): 619-623. doi: 10.7498/aps.50.619
    [18] 马大猷. 微扰法求解非线性驻波问题.  , 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
    [19] 贺凯芬, 胡岗. 微扰法解由正弦波驱动的非线性漂移波的分岔.  , 1991, 40(12): 1948-1954. doi: 10.7498/aps.40.1948
    [20] 张钟华. 变动边界微扰法及其对精密电容器误差计算的应用.  , 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
计量
  • 文章访问数:  6296
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-27
  • 修回日期:  2014-05-22
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map