-
In this study, the thermophysical properties and rapid solidification mechanism of highly undercooled liquid Zr60Ni25Al15 alloy are investigated through the electrostatic levitation technique. The maximum undercooling of this alloy reaches 316 K (0.25TL). Both density and surface tension display a linear relationship with temperature, while viscosity is related to temperature exponentially. When alloy undercooling is less than 259 K, two significant recalescence events are observed during solidification, corresponding to the formation of pseudobinary (Zr6Al2Ni + Zr5Ni4Al) eutectic and ternary (Zr6Al2Ni + Zr5Ni4Al + Zr2Ni) eutectic. The growth velocity of the binary eutectic phase gradually increases with further undercooling and reaches a maximum undercooling value of 259 K. In contrast, once undercooling exceeds 259 K, a single recalescence event occurs, leading to the independent nucleation of all three compound phases from alloy melt and the rapid growth of a ternary anomalous eutectic structure. Notably, the growth velocity of the ternary eutectic phase exhibits a gradual decline with further undercooling. This diminishing trend of the growth velocity suggests that further undercooling might entirely suppress crystal growth dynamically at a threshold of 385 K. With classical nucleation theory and the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model, the onsets of crystallization for the three phases are calculated, thereby constructing a time–temperature-transformation (TTT) diagram. This diagram elucidates the competitive nucleation among the three phases in the undercooled melt. Both theoretical and experimental evidence reveal that Zr6Al2Ni phase is primarily nucleated at lower undercooling levels, whereas under higher cooling condition, it is possible for all three phases to nucleate simultaneously.
-
Keywords:
- electrostatic levitation /
- liquid metal /
- rapid solidification /
- eutectic growth
[1] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202
Google Scholar
[2] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 62 056601
Google Scholar
Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601
Google Scholar
[3] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203
Google Scholar
[4] Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171
Google Scholar
[5] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801
Google Scholar
[6] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 66 136401
Google Scholar
Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401
Google Scholar
[7] Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902
Google Scholar
[8] Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992
Google Scholar
[9] Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211
Google Scholar
[10] Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431
Google Scholar
[11] Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851
Google Scholar
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785
Google Scholar
[13] Hua N B, Zhang T 2014 J. Alloys Compd. 602 339
[14] Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80
Google Scholar
[15] Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301
Google Scholar
[16] Li Y, Xu J 2017 Corros. Sci. 128 73
Google Scholar
[17] Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101
Google Scholar
[18] Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490
Google Scholar
[19] Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175
Google Scholar
[20] Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504
Google Scholar
[21] Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406
Google Scholar
[22] 王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816
Google Scholar
Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816
Google Scholar
[23] Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501
Google Scholar
[24] Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101
Google Scholar
[25] Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411
Google Scholar
[26] Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073
Google Scholar
[27] Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789
Google Scholar
[28] Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111
Google Scholar
[29] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42
Google Scholar
[30] Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127
Google Scholar
[31] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8
[32] Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363
Google Scholar
[33] Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709
Google Scholar
-
图 3 静电悬浮条件下液态Zr60Ni25Al15合金的凝固过程温度曲线分析 (a) ΔT = 56 K; (b) ΔT = 316 K; (c) 二相共晶生长速度和过冷度的关系, ΔT < ΔTC = 259 K; (d) 三元共晶生长速度和过冷度的关系, $ \Delta T \geqslant \Delta {T_{\text{C}}} = 259{\text{ K}} $
Figure 3. Solidification characteristics of Zr60Ni25Al15 alloy under electrostatic levitation condition: (a) ΔT = 56 K; (b) ΔT = 316 K; (c) binary eutectic growth velocity versus undercooling, ΔT < ΔTC = 259 K; (d) ternary eutectic growth velocity versus undercooling, ΔT ≥ ΔTC = 259 K
表 1 计算形核C曲线用物性参数
Table 1. Physical parameters used in calculations of time-temperature-transformation curves.
-
[1] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202
Google Scholar
[2] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 62 056601
Google Scholar
Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601
Google Scholar
[3] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203
Google Scholar
[4] Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171
Google Scholar
[5] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801
Google Scholar
[6] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 66 136401
Google Scholar
Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401
Google Scholar
[7] Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902
Google Scholar
[8] Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992
Google Scholar
[9] Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211
Google Scholar
[10] Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431
Google Scholar
[11] Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851
Google Scholar
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785
Google Scholar
[13] Hua N B, Zhang T 2014 J. Alloys Compd. 602 339
[14] Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80
Google Scholar
[15] Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301
Google Scholar
[16] Li Y, Xu J 2017 Corros. Sci. 128 73
Google Scholar
[17] Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101
Google Scholar
[18] Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490
Google Scholar
[19] Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175
Google Scholar
[20] Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504
Google Scholar
[21] Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406
Google Scholar
[22] 王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816
Google Scholar
Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816
Google Scholar
[23] Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501
Google Scholar
[24] Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101
Google Scholar
[25] Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411
Google Scholar
[26] Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073
Google Scholar
[27] Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789
Google Scholar
[28] Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111
Google Scholar
[29] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42
Google Scholar
[30] Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127
Google Scholar
[31] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8
[32] Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363
Google Scholar
[33] Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709
Google Scholar
Catalog
Metrics
- Abstract views: 2396
- PDF Downloads: 116
- Cited By: 0