Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition

Chen Ke-Ping Lü Peng Peng Wang

Citation:

Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition

Chen Ke-Ping, Lü Peng, Peng Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Eutectic phase transition involves the competitive nucleation and coupled growth of two solid phases within one liquid phase. Phase selection especially under unequilibrium condition, may result in novel microstructures and thus affects the performances of eutectic alloys. Liquid Cu-10 wt.% Zr hypoeutectic, Cu-12.27 wt.% Zr eutectic and Cu-15 wt.% Zr hypereutectic alloys are rapidly solidified in the containerless process in a 3 m drop tube. During the experiments, the Cu-Zr alloys are heated by induction heating in an ultrahigh vacuum chamber and further overheated to 200 K above their liquidus temperatures for a few seconds. Then the liquid alloys are ejected out from the small orifice and dispersed into tiny droplets after adding the argon gas flow. The solidified samples are analyzed by Phenom Pro scanning electron microscope and HXD-2000 TMC/LCD microhardness instrument. The competitive nucleation and growth among (Cu) dendrite, Cu9Zr2 dendrite and (Cu+Cu9Zr2) eutectic phase become more and more intensive as droplet diameter decreases. The layer spacing in Cu-12.27 wt.% Zr eutectic alloy decreases when the undercooling increases. And the microstructural transition takes place from lamellar eutectic to anomalous eutectic. The microstructure of Cu-10 wt.% Zr hypoeutectic alloy is characterized by (Cu) dendrite and lamellar eutectic. Whereas the microstructure in Cu-15 wt.% Zr hypereutectic alloy consists of Cu9Zr2 dendrite and lamellar eutectic. For the Cu-10 wt.% Zr hypoeutectic alloy, with the decrease of droplet size, the primary (Cu) phase transforms from coarse dendrites into equiaxed grains, and the volume fraction of (Cu) dendrite becomes larger and larger. As for Cu-15 wt.% Zr hypereutectic alloy, the primary Cu9Zr2 intermetallic compound grows in a band manner, and with the decrease of droplet size and increase of cooling rate, the solidified microstructure transforms from band Cu9Zr2 dendrite plus lamellar eutectic into spherical cell structure. The three alloys reach maximal undercooling at 177 K, 156 K and 204 K, respectively. The Trivedi-Magnin-Kurz and Lipton-Kurz-Trivedi/Boetinger-Coriell-Trivedi models are used to analyze the dendritic and eutectic growth as a function of undercooling. Theoretical analysis indicates that both dendritic growth and eutectic growth are controlled by solute diffusion during liquid-solid phase transition. To further investigate the effects of cooling rate and undercooling on the mechanical properties of Cu-Zr eutectic alloys, the microhardness of each of different phases is determined. The microhardness of the primary (Cu) phase within Cu-10 wt.% Zr hypoeutectic alloy is strengthened with the increase of cooling rate. The microhardness of eutectic within the three alloys also increases with increasing the cooling rate and the initial alloy composition of the alloy.
      Corresponding author: Peng Wang, hpwang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51474175, 51522102) and the Science and Technology Program of Shaanxi Province, China (Grant No. 2015GY138).
    [1]

    Cao L G, Cochrane R F, Mullis A M 2014 J. Alloys Compd. 615 S599

    [2]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [3]

    Cui C J, Zhang J, Xue T, Liu L, Fu H Z 2015 J. Mater. Sci. Technol. 31 280

    [4]

    Hu L, Li L H, Yang S J, Wei B B 2015 Chem. Phys. Lett. 621 91

    [5]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 60 058103]

    [6]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 60 034602]

    [7]

    Zhang N N, Luo X H, Feng S B, Ren Y H 2014 J. Mater. Sci. Technol. 30 499

    [8]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [9]

    Zuo X W, Guo R, Zhao C C, Zhang L, Wang E G, Han K 2016 J. Alloys Compd. 676 46

    [10]

    Erol M, Byk U 2016 Trans. Indian. Inst. Met. 69 961

    [11]

    Ge L L, Liu R P, Li G, Ma M Z, Wang W K 2004 Mater. Sci. Eng. A 385 128

    [12]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]

    [13]

    L P, Wang H P 2016 Sci. Rep. 6 22641

    [14]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [15]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [16]

    Boetinger W J, Coriell S R, Trivedi R 1987 Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies Baton Rouge, USA, 1987 p13

    [17]

    Zhou S H, Napolitano R E 2010 Acta Mater. 58 2186

    [18]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202

    [19]

    Gegner J, Shuleshova O, Kobold R, Holland-Moritz D, Yang F, Hornfeck W, Bednarcik J, Herlach D M 2013 J. Alloys Compd. 576 232

    [20]

    Gierlotka W, Zhang K C, Chang Y P 2011 J. Alloys Compd. 509 8313

    [21]

    Han X J, Schober H R 2011 Phys. Rev. B 83 224201

    [22]

    Wang N, Li C R, Du Z M, Wang F M, Zhang W J 2006 Calphad 30 461

    [23]

    Yang F, Holland-Moritz D, Gegner J, Heintzmann P, Kargl F, Yuan C C, Simeoni G G, Meyer A 2014 Europhys. Lett. 107 46001

    [24]

    Okamoto H 2008 J. Phase Equilibria. 29 204

    [25]

    Levi C G, Mehrabian R 1982 Matall. Trans. A 13 221

    [26]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [27]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [28]

    Gale W F, Totememier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Publishers Ltd) p8-1

    [29]

    Guo H S, Guo X P 2011 Trans. Nonfermus Met. Soc. China 21 1283

    [30]

    Erol M, Byk U, Volkmann T, Herlach D M 2013 J. Alloys Compd. 575 96

  • [1]

    Cao L G, Cochrane R F, Mullis A M 2014 J. Alloys Compd. 615 S599

    [2]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [3]

    Cui C J, Zhang J, Xue T, Liu L, Fu H Z 2015 J. Mater. Sci. Technol. 31 280

    [4]

    Hu L, Li L H, Yang S J, Wei B B 2015 Chem. Phys. Lett. 621 91

    [5]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 60 058103]

    [6]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 60 034602]

    [7]

    Zhang N N, Luo X H, Feng S B, Ren Y H 2014 J. Mater. Sci. Technol. 30 499

    [8]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [9]

    Zuo X W, Guo R, Zhao C C, Zhang L, Wang E G, Han K 2016 J. Alloys Compd. 676 46

    [10]

    Erol M, Byk U 2016 Trans. Indian. Inst. Met. 69 961

    [11]

    Ge L L, Liu R P, Li G, Ma M Z, Wang W K 2004 Mater. Sci. Eng. A 385 128

    [12]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]

    [13]

    L P, Wang H P 2016 Sci. Rep. 6 22641

    [14]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [15]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [16]

    Boetinger W J, Coriell S R, Trivedi R 1987 Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies Baton Rouge, USA, 1987 p13

    [17]

    Zhou S H, Napolitano R E 2010 Acta Mater. 58 2186

    [18]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202

    [19]

    Gegner J, Shuleshova O, Kobold R, Holland-Moritz D, Yang F, Hornfeck W, Bednarcik J, Herlach D M 2013 J. Alloys Compd. 576 232

    [20]

    Gierlotka W, Zhang K C, Chang Y P 2011 J. Alloys Compd. 509 8313

    [21]

    Han X J, Schober H R 2011 Phys. Rev. B 83 224201

    [22]

    Wang N, Li C R, Du Z M, Wang F M, Zhang W J 2006 Calphad 30 461

    [23]

    Yang F, Holland-Moritz D, Gegner J, Heintzmann P, Kargl F, Yuan C C, Simeoni G G, Meyer A 2014 Europhys. Lett. 107 46001

    [24]

    Okamoto H 2008 J. Phase Equilibria. 29 204

    [25]

    Levi C G, Mehrabian R 1982 Matall. Trans. A 13 221

    [26]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [27]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [28]

    Gale W F, Totememier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Publishers Ltd) p8-1

    [29]

    Guo H S, Guo X P 2011 Trans. Nonfermus Met. Soc. China 21 1283

    [30]

    Erol M, Byk U, Volkmann T, Herlach D M 2013 J. Alloys Compd. 575 96

  • [1] Xu Shan-Sen, Chang Jian, Zhai Bin, Zhu Xian-Nian, Wei Bing-Bo. Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy. Acta Physica Sinica, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] Wu Bo-Wen, Hu Liang, Geng De-Lu, Wei Bing-Bo. Metastable phase separation and duplex metallic glass formation of liquid Zr35Al23Ni22Gd20 alloy. Acta Physica Sinica, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] Xu Shan-Sen, Chang Jian, Wu Yu-Hao, Sha Sha, Wei Bing-Bo. Rapid solidification mechanism of liquid quinary Ni-Zr-Ti-Al-Cu alloy investigated by high-speed cinematography. Acta Physica Sinica, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [4] Sha Sha, Wang Wei-Li, Wu Yu-Hao, Wei Bing-Bo. Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition. Acta Physica Sinica, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [5] Zhu Hai-Zhe, Ruan Ying, Gu Qian-Qian, Yan Na, Dai Fu-Ping. Rapid solidification mechanism and magnetic properties of Ni-Fe-Ti alloy prepared in drop tube. Acta Physica Sinica, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [6] Gu Qian-Qian, Ruan Ying, Dai Fu-Ping. Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition. Acta Physica Sinica, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [7] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [8] Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin. Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy. Acta Physica Sinica, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [9] Yang Shang-Jing, Wang Wei-Li, Wei Bing-Bo. Growth mechanisms of dendrites and eutectics within undercooled liquid Al-Ni alloys. Acta Physica Sinica, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [10] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [11] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [12] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [13] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] Yin Han-Yu, Lu Xiao-Yu. Rapid solidification of undercooled Cu60Sn30Pb10 monotectic alloy. Acta Physica Sinica, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [15] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [16] Mei Ce-Xiang, Ruan Ying, Dai Fu-Ping, Wei Bing-Bo. Phase constitution and solidification characteristics of undercooled Ag-Cu-Ge ternary eutectic alloy. Acta Physica Sinica, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [17] Zang Du-Yang, Wang Hai-Peng, Wei Bing-Bo. Rapid dendritic growth in highly undercooled ternary Ni-Cu-Co alloy. Acta Physica Sinica, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [18] Liu Xiang-Rong, Wang Nan, Wei Bing-Bo. Rapid growth of Cu-Pb monotectics under containerless condition. Acta Physica Sinica, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [19] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [20] Yao Wen-Jing, Yang Chun, Han Xiu-Jun, Chen Min, Wei Bing-Bo, Guo Zeng-Yuan. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
Metrics
  • Abstract views:  6497
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2016
  • Accepted Date:  28 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map