Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Complex network centrality method based on multi-order K-shell vector

Wang Kai-Li Wu Chun-Xue Ai Jun Su Zhan

Citation:

Complex network centrality method based on multi-order K-shell vector

Wang Kai-Li, Wu Chun-Xue, Ai Jun, Su Zhan
PDF
HTML
Get Citation
  • The K-shell has important theoretical significance and application value in measuring the importance of nodes in complex networks. However, in the K-shell method, most of nodes possess an identical K-shell value so that the relative importance of the identical K-shell nodes cannot be further compared with each other. Therefore, based on the K-shell value of nodes in the complex network and the K-shell values of multi-order neighbors in complex networks, in this paper we use the vectors to represent the relative importance of node in each of complex networks, which is named multi-order K-shell vector. Multi-order K-shell vector centrality defines a vector indicating the number of multi-order neighbors with different K-shells and groups them into elements of the vector. Each vector infers to not only the original K-shell of the given node but also the number of its multi-order neighbors and their K-shell values, which indicates the propagation capability of the given node. An approach to comparing two multi-order K-shell vectors is also presented, which is used to sort the vectors to evaluate the node importance. The method is explored by comparing several existing centrality methods. Through the experiments of SI propagation and static attack experiments in seven real-world networks, it is found that multi-order K-shell vector centrality provides low computational complexity, effectively evaluates nodes with high propagation capability, which confirms the improved performance in susceptible infected model propagation experiments. On the other hand, the static attack experiments show that the multi-order K-shell vector tends to preferentially select the core structure with powerful propagation capability in the network. The multi-order K-shell vector greatly improves the difference rate of node centrality under the premise of preserving the K-shell structure information, as well as balancing the importance measure of nodes in the complex network and the structure evaluation of propagation capability. The multi-order K-shell vector is not appropriate for all types of networks when considering the result of network attacking. For the networks with low clustering coefficients and high average path lengths, multi-order K-shell vector method is dominant and the effect is relatively obvious. By contrast, multi-order K-shell vector surpasses most of centrality approaches when spreading information is our priority. In a few networks, eigenvector centrality presents a slightly better performance with a larger computational complexity. The proposed centrality measure is therefore of great theoretical and practical importance.
      Corresponding author: Ai Jun, aijun@outlook.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61803264)
    [1]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [2]

    Newman M, Girvan M 2004 Phys. Rev. E 69 423

    [3]

    Ai J, Su Z, Li Y, Wu C X 2019 Physica A 527 121155Google Scholar

    [4]

    Ai J, Liu Y Y, Su Z, Zhang H , Zhao F Y 2019 Europhys. Lett. 126 38003Google Scholar

    [5]

    Brin S, Page L 2012 Computer Networks 56 3825Google Scholar

    [6]

    Newman M 2010 Networks: An introduction (Oxford: Oxford University Press) p327

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682Google Scholar

    [8]

    Keeling M J, Rohani P, Pourbohloul B 2008 Clinical Infectious Diseases 47 864Google Scholar

    [9]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [10]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [11]

    Li H, Gao G, Chen R 2019 Int. J. Software Engineer. Knowledge Engineer. 29 93Google Scholar

    [12]

    刘建国, 任卓明, 郭强, 汪秉宏 2013 62 178901Google Scholar

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901Google Scholar

    [13]

    任晓龙, 吕琳媛 2014 科学通报 59 1175

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175

    [14]

    Chen D, Lin Y L, Shang M S 2012 Fuel and Energy Abstracts 391 1777

    [15]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [16]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [18]

    罗仕龙, 龚凯, 唐朝生, 周靖 2017 66 188902Google Scholar

    Luo S L, Gong K, Tang C S, Zhou J 2017 Acta Phys. Sin. 66 188902Google Scholar

    [19]

    Jiang L C, Zhao X, Ge B, Xiao W, Ruan Y 2019 Physica A 516 58

    [20]

    Gong K, Kang L 2018 J. Syst. Sci. Inf. 6 366

    [21]

    朱晓霞, 赵雪, 刘萌萌 2017 计算机应用研究 34 2582Google Scholar

    Zhu X X, Zhao X, Liu M M 2017 Application Research of Computers 34 2582Google Scholar

    [22]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 47 16

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Scientia Sinica Mathematica 47 16

    [23]

    李慧嘉, 李爱华, 李慧颖 2017 计算机学报 40 15

    Li H J, Li A H, Li H Y 2017 Chinese Journal of Computers 40 15

    [24]

    Zhang J P, Xu H, Yang J, Lun L J 2018 ICPCSEE Zhengzhou, China, September 21−24, 2018 p28

    [25]

    王浩, 张赞, 李磊, 汪萌 2016 电子学报 44 2330Google Scholar

    Wang H, Zhang Z, Li L, Wang M 2016 Acta Electronica Sinica 44 2330Google Scholar

    [26]

    Ai J, Zhao H, Carley K M, Su Z, Li H 2013 Eur. Phys. J. B 86 163Google Scholar

    [27]

    Freeman L C 1979 Social Networks 1 215

    [28]

    Brandes U 2001 Math. Sociology 25

    [29]

    E.Knuth D 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (Vol.1)

    [30]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Newman M 2006 Phys. Rev. E 74 036104Google Scholar

    [33]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [34]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [35]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [36]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第306−307页

    Wang X F, Li X, Chen G R 2012 Network Science: an Introduction (Beijing: Higher Education Press) pp306−307 (in Chinese)

  • 图 1  K-shell分解法的示意图

    Figure 1.  A diagram of the K-shell.

    图 2  MKV算法实现流程图

    Figure 2.  MKV algorithm implementation flow chart.

    图 3  向量比较大小算法流程图

    Figure 3.  Flow chart of vector comparison size algorithm.

    图 4  美国电力网power在静态攻击实验中最大连通子团变化情况

    Figure 4.  Largest connected component during static attack experiment on power.

    图 5  美国电力网power在蓄意攻击实验中子团数量变化情况

    Figure 5.  Total component number during static attack experiment on power.

    图 6  七个网络受到蓄意攻击中最大连通子团的统计情况(越小越好) (a) 最大连通子团平均值情况; (b) 最大连通子团最值情况

    Figure 6.  Largest connected component during static attack experiments on the seven networks(the smaller, the better)

    图 7  七个网络静态攻击重要节点的子团数量的统计情况(越大越好) (a) 子团数量平均值情况; (b) 子团数量最值情况

    Figure 7.  The number of components during static attack experiments on the seven networks (the larger, the better)

    图 8  SI传播模型图

    Figure 8.  SI propagation model diagram.

    图 9  美国电力网power在SI传播模型下感染节点的变化情况

    Figure 9.  Change of infected nodes in Power of American Electric Power network under SI propagation model.

    图 10  大肠杆菌代谢网络C. Elegans在SI传播模型下感染节点的变化情况

    Figure 10.  Changes of infection nodes in C. Elegans network under SI propagation model.

    图 11  七个网络传播感染节点的统计情况(越大越好) (a) SI传播节点数量比较平均值; (b) SI传播节点数量比较最值

    Figure 11.  The statistical result of infected nodes of seven network (the larger, the better)

    表 1  本文中用到的几个网络基本信息

    Table 1.  Several basic network information used in this paper.

    网络节点数量边数量平均度值聚集系数平均路径长度同配系数
    LesMiserables772546.5970.7362.641–0.4756
    PowerGrid494165942.6690.10718.9890.4616
    Email1134655611.5630.5261.992–0.0436
    Coauthor158927423.4510.8785.8230.0035
    Dolphin621595.1290.3033.357–0.1652
    C.Elegans45345969.0070.6572.664–0.1085
    Club34782.290.5882.408–0.2145
    DownLoad: CSV

    表 2  中心性的区分度在不同网络中的取值情况(越大越好)

    Table 2.  Value of Centrality Distinction in Different Networks(the larger, the better).

    DRBCECDegreeK-shellMKV
    C.Elegans66.225%88.962%8.830%2.208%40.839%
    Club61.765%79.412%32.353%11.765%47.059%
    Coauthors9.880%29.264%1.447%0.692%9.880%
    Dolphin87.097%96.774%19.355%6.452%70.968%
    Email62.346%94.533%4.586%0.970%53.263%
    Power59.279%86.217%0.324%0.101%8.561%
    LesMiserables41.558%67.532%23.377%10.390%37.662%
    DownLoad: CSV
    Baidu
  • [1]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [2]

    Newman M, Girvan M 2004 Phys. Rev. E 69 423

    [3]

    Ai J, Su Z, Li Y, Wu C X 2019 Physica A 527 121155Google Scholar

    [4]

    Ai J, Liu Y Y, Su Z, Zhang H , Zhao F Y 2019 Europhys. Lett. 126 38003Google Scholar

    [5]

    Brin S, Page L 2012 Computer Networks 56 3825Google Scholar

    [6]

    Newman M 2010 Networks: An introduction (Oxford: Oxford University Press) p327

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682Google Scholar

    [8]

    Keeling M J, Rohani P, Pourbohloul B 2008 Clinical Infectious Diseases 47 864Google Scholar

    [9]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [10]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [11]

    Li H, Gao G, Chen R 2019 Int. J. Software Engineer. Knowledge Engineer. 29 93Google Scholar

    [12]

    刘建国, 任卓明, 郭强, 汪秉宏 2013 62 178901Google Scholar

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901Google Scholar

    [13]

    任晓龙, 吕琳媛 2014 科学通报 59 1175

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175

    [14]

    Chen D, Lin Y L, Shang M S 2012 Fuel and Energy Abstracts 391 1777

    [15]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [16]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [18]

    罗仕龙, 龚凯, 唐朝生, 周靖 2017 66 188902Google Scholar

    Luo S L, Gong K, Tang C S, Zhou J 2017 Acta Phys. Sin. 66 188902Google Scholar

    [19]

    Jiang L C, Zhao X, Ge B, Xiao W, Ruan Y 2019 Physica A 516 58

    [20]

    Gong K, Kang L 2018 J. Syst. Sci. Inf. 6 366

    [21]

    朱晓霞, 赵雪, 刘萌萌 2017 计算机应用研究 34 2582Google Scholar

    Zhu X X, Zhao X, Liu M M 2017 Application Research of Computers 34 2582Google Scholar

    [22]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 47 16

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Scientia Sinica Mathematica 47 16

    [23]

    李慧嘉, 李爱华, 李慧颖 2017 计算机学报 40 15

    Li H J, Li A H, Li H Y 2017 Chinese Journal of Computers 40 15

    [24]

    Zhang J P, Xu H, Yang J, Lun L J 2018 ICPCSEE Zhengzhou, China, September 21−24, 2018 p28

    [25]

    王浩, 张赞, 李磊, 汪萌 2016 电子学报 44 2330Google Scholar

    Wang H, Zhang Z, Li L, Wang M 2016 Acta Electronica Sinica 44 2330Google Scholar

    [26]

    Ai J, Zhao H, Carley K M, Su Z, Li H 2013 Eur. Phys. J. B 86 163Google Scholar

    [27]

    Freeman L C 1979 Social Networks 1 215

    [28]

    Brandes U 2001 Math. Sociology 25

    [29]

    E.Knuth D 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (Vol.1)

    [30]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Newman M 2006 Phys. Rev. E 74 036104Google Scholar

    [33]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [34]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [35]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [36]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第306−307页

    Wang X F, Li X, Chen G R 2012 Network Science: an Introduction (Beijing: Higher Education Press) pp306−307 (in Chinese)

  • [1] Sun Hao-Chen, Liu Xiao-Fan, Xu Xiao-Ke, Wu Ye. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model. Acta Physica Sinica, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [2] Wang Xiao-Yang, Wang Ying, Zhu Can-Shi, Zhu Lin, Fu Chao-Qi. Information radiation model with across neighbor spread abilities of nodes. Acta Physica Sinica, 2017, 66(3): 038901. doi: 10.7498/aps.66.038901
    [3] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [4] Wang Hong-Sheng, Xu Zi-Yan, Zhang Yang, Chen Kai-Yan, Li Bao-Chen, Wu Ling-An. Attack on the advanced encryption standard cipher chip based on the correspondence between Hamming weight and the number of emitted photons. Acta Physica Sinica, 2016, 65(11): 118901. doi: 10.7498/aps.65.118901
    [5] Song Yu-Ping, Ni Jing. Effect of variable network clustering on the accuracy of node centrality. Acta Physica Sinica, 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [6] Chen Li-Juan, Lu Shi-Ping. The periodic problem of drift motion of the guidance center in the earth’s magnetosphere electromagnetic field. Acta Physica Sinica, 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [7] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [8] Tao Jian-Jun, Hu Xiang-Hui. The development and dissemination characteristic of disturbance in weak tropical cyclones. Acta Physica Sinica, 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [9] Li Ze-Quan, Zhang Rui-Xin, Yang Zhao, Zhao Hong-Ze, Yu Jian-Hao. Influence complex network centrality on disaster spreading. Acta Physica Sinica, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [10] Song Yu-Rong, Jiang Guo-Ping. Malware propagation in scale-free networks for the nodes with different anti-attack abilities. Acta Physica Sinica, 2010, 59(2): 705-711. doi: 10.7498/aps.59.705
    [11] Song Yu-Rong, Jiang Guo-Ping. Epidemic-spreading model for networks with different anti-attack abilities of nodes and nonuniform transmission of edges. Acta Physica Sinica, 2010, 59(11): 7546-7551. doi: 10.7498/aps.59.7546
    [12] Yang Xu-Dong, Xu Zhong-Ying, Luo Xiang-Dong, Fang Zai-Li, Li Guo-Hua, Su Yin-Qiang, Ge Wei-Kun. Time-resolved photoluminescence of Te isoelectronic center in ZnS. Acta Physica Sinica, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [13] Ma Jun, Pu Zhong-Sheng, Feng Wang-Jun, Li Wei-Xue. A new scheme of suppression of spiral and spatiotemporal chaos in centric field. Acta Physica Sinica, 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
    [14] Gu Juan, Liang Jiu-Qing. Energy spectrum analysis of donor-center quantum dots. Acta Physica Sinica, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [15] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [16] Zhang Yuan-Chang, Huang Qi-Sheng, Kang Jun-Yong, Wu Zheng-Yun, Yu Xin. . Acta Physica Sinica, 1995, 44(8): 1256-1262. doi: 10.7498/aps.44.1256
    [17] SUN ZONG-QI, HAN MING-HUI. DISCRETE ELASTIC MODEL FOR CRYSTAL DISLOCATION——CORE STRUCTURE AND P-N FORCE. Acta Physica Sinica, 1989, 38(2): 183-192. doi: 10.7498/aps.38.183
    [18] WU GUANG-HAN, LU ZHAO-QI. MULTICENTRE VARIATIONAL MODEL FOR STUDYING THE CLUSTER FORMATION OF Be8 AND Li6. Acta Physica Sinica, 1977, 26(6): 459-466. doi: 10.7498/aps.26.459
    [19] LI GUO-DONG, WANG XIN-LIN, XIAO FU-KUANG. EFFECT OF SMALL ADDITIONS OF RARE EARTH OXIDES ON THE MAGNETIC BEHAVIOR OF A VARIETY OF SQUARE-LOOP FERRITE CORE. Acta Physica Sinica, 1960, 16(5): 272-280. doi: 10.7498/aps.16.272
    [20] Hu Hai-chang. ON THE DISPLACEMENTS IN THE PROBLEMSOF SAINTVENANT,AND THE CENTER OF SHEAR AND THE CENTER OF TWIST. Acta Physica Sinica, 1956, 12(4): 350-359. doi: 10.7498/aps.12.350
Metrics
  • Abstract views:  9650
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2019
  • Accepted Date:  17 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回
Baidu
map