Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition

Sha Sha Wang Wei-Li Wu Yu-Hao Wei Bing-Bo

Citation:

Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition

Sha Sha, Wang Wei-Li, Wu Yu-Hao, Wei Bing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The dendritic growth process and Vickers microhardness enhancement of primary Co7Mo6 phase in undercooled liquid Co-50%Mo hypereutectic alloy are systematically investigated by using electromagnetic levitation and drop tube. It is found that the rapid solidification microstructures are mainly characterized by primary Co7Mo6 dendrites plus interdendritic (Co7Mo6+Co) eutectic irrespective of experimental conditions. In electromagnetic levitation experiment, the obtained maximum undercooling reaches 203 K (0.12TL). With the rise in bulk undercooling, primary Co7Mo6 dendrite growth velocity monotonically increases according to a power function and reaches 22.5 mm-1 at the highest undercooling. The secondary dendrite spacing decreases from 45.8 to 13.6 m, while Co content in primary dendrites shows an increasing trend. This indicates that an evident grain refinement and solute trapping take place for primary Co7Mo6 dendrites during rapid solidification. The dependence of Vickers microhardness on Co content follows an exponential function. Moreover, the variation of Vickers microhardness with the grain size also satisfies an exponential relationship. In addition, Lipton-Kurz-Trivedi/Boettinger-Coriel-Trivedi model is used to analyze the growth kinetics of primary Co7Mo6 dendrites. In the experimental undercooling range, the growth process of primary Co7Mo6 dendrites is controlled mainly by solute diffusion and they grow sluggishly. Under free fall condition, liquid Co-50%Mo alloy is subdivided into many droplets inside a drop tube and their diameters range from 1379 to 139 m. With alloy droplet size decreasing, both droplet undercooling and cooling rate increase rapidly. In a large droplet-diameter regime above 392 m, primary Co7Mo6 phase displays faceted-growth characteristics. Furthermore, primary Co7Mo6 dendrites are refined greatly and their solute solubility is significantly extended as droplet size becomes smaller. Once the alloy droplet diameter decreases to a value below this threshold value, the faceted-growth characteristics start to disappear gradually, which is accompanied with a conspicuous grain refinement and a solute solubility extension. Both the solute solubility enhancement and grain size refinement contribute significantly to the exponential improvement in microhardness if primary Co7Mo6 phase grows in a faceted way. Otherwise, the solute solubility enhancement and grain size refinement result in the linear increase of Vickers microhardness. Theoretical analyses demonstrate that the primary phase microhardness is strongly dependent on its solute content and morphology characteristic.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51371150, 51571163).
    [1]

    Silva L S, Mercena S G, Garcia D J, Bittar E M, Jesus C B R, Pagliuso P G, Lora-Serrano R, Meneses C T, Duque J G S 2017 Phys. Rev. B 95 134434

    [2]

    Verma S, Pandey O P, Paesano, A, Sharma P 2016 J. Alloy. Compd. 678 284

    [3]

    Hu J Q, Xie M, Zhang J M, Liu M M, Yang Y C, Chen Y T 2013 Acta Phys. Sin. 62 247102 (in Chinese)[胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰 2013 62 247102]

    [4]

    Evans M J, Wu Y, Kranak V F, Newman N, Reller A, Garciagarcia F J, Hussermann U 2009 Phys. Rev. B 80 064514

    [5]

    Wu Y H, Chang J, Wang W L, Hu L, Yang S J, Wei B 2017 Acta Mater. 129 366

    [6]

    Hernando A, Amils X, Nogus J, Suriach S, Bar M D, Ibarra M R 1998 Phys. Rev. B 58 11864

    [7]

    Ahmad R, Cochrane R F, Mullis A M 2012 J. Mater. Sci. 47 2411

    [8]

    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K 2006 Science 312 90

    [9]

    Lobiak E V, Shlyakhova E V, Bulusheva L G, Plyusnin P E, Shubin Y V, Okotrub A V 2015 J. Alloy. Compd. 621 351

    [10]

    Oikawa K, Qin G W, Sato M, Kitakami O, Shimada Y, Sato J, Fukamichi K, Ishida K 2003 Appl. Phys. Lett. 83 966

    [11]

    Yao W J, Dai F P, Wei B 2007 Phil. Mag. Lett. 87 613

    [12]

    Hu Z P, Zhang J B, Xu S F, Wu C J, Wang Z H, Yang K L, Wang W Q, Du X B, Su F 2012 Acta Phys. Sin. 61 207501 (in Chinese)[侯志鹏, 张金宝, 徐世峰, 吴春姬, 王子涵, 杨坤隆, 王文全, 杜晓波, 苏峰 2012 61 207501]

    [13]

    Ohmori T, Go H, Nakayama A, Mametsuka H, Suzuki E 2001 Mater. Lett. 47 103

    [14]

    Wei S L, Huang L J, Chang J, Yang S J, Geng L 2016 Acta Phys. Sin. 65 096101 (in Chinese)[魏绍楼, 黄陆军, 常健, 杨尚京, 耿林 2016 65 096101]

    [15]

    Leonhardt M, Lser W, Lindenkreuz H G 1999 Acta Mater. 47 2961

    [16]

    Royer Z L, Tackes C, Lesar R, Napolitano R E 2013 J. Appl. Phys. 113 214901

    [17]

    Masslaski T B, H Okamoto, P R Subramanian, L Kacprzak 1990 Binary Alloy Diagrams (2nd Ed.) (Geauga: ASM International) pp1208-1209

    [18]

    Boettinger W J, Coriell S R, Trivedi R 1987 Proceedings of the Fourth International Conference on Rapid Solidification Processing: Principles and Technologies (Baton Rouge: Claitor's Publishing Division) pp13-20

    [19]

    Trivedi R, Lipton J, Kurz W 1987 Acta Metall. 35 965

    [20]

    Gale W, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Butterworth-Heinemann Publications) p14-1

    [21]

    Levi C G, Mehrabian R 1982 Metall. Trans. A 13 221

    [22]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [23]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification (third edition) (Aedermannsdorf:Trans. Tech. Publications Ltd) pp34-59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [25]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese)[杨尚京, 王伟丽, 魏炳波 2015 64 056401]

  • [1]

    Silva L S, Mercena S G, Garcia D J, Bittar E M, Jesus C B R, Pagliuso P G, Lora-Serrano R, Meneses C T, Duque J G S 2017 Phys. Rev. B 95 134434

    [2]

    Verma S, Pandey O P, Paesano, A, Sharma P 2016 J. Alloy. Compd. 678 284

    [3]

    Hu J Q, Xie M, Zhang J M, Liu M M, Yang Y C, Chen Y T 2013 Acta Phys. Sin. 62 247102 (in Chinese)[胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰 2013 62 247102]

    [4]

    Evans M J, Wu Y, Kranak V F, Newman N, Reller A, Garciagarcia F J, Hussermann U 2009 Phys. Rev. B 80 064514

    [5]

    Wu Y H, Chang J, Wang W L, Hu L, Yang S J, Wei B 2017 Acta Mater. 129 366

    [6]

    Hernando A, Amils X, Nogus J, Suriach S, Bar M D, Ibarra M R 1998 Phys. Rev. B 58 11864

    [7]

    Ahmad R, Cochrane R F, Mullis A M 2012 J. Mater. Sci. 47 2411

    [8]

    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K 2006 Science 312 90

    [9]

    Lobiak E V, Shlyakhova E V, Bulusheva L G, Plyusnin P E, Shubin Y V, Okotrub A V 2015 J. Alloy. Compd. 621 351

    [10]

    Oikawa K, Qin G W, Sato M, Kitakami O, Shimada Y, Sato J, Fukamichi K, Ishida K 2003 Appl. Phys. Lett. 83 966

    [11]

    Yao W J, Dai F P, Wei B 2007 Phil. Mag. Lett. 87 613

    [12]

    Hu Z P, Zhang J B, Xu S F, Wu C J, Wang Z H, Yang K L, Wang W Q, Du X B, Su F 2012 Acta Phys. Sin. 61 207501 (in Chinese)[侯志鹏, 张金宝, 徐世峰, 吴春姬, 王子涵, 杨坤隆, 王文全, 杜晓波, 苏峰 2012 61 207501]

    [13]

    Ohmori T, Go H, Nakayama A, Mametsuka H, Suzuki E 2001 Mater. Lett. 47 103

    [14]

    Wei S L, Huang L J, Chang J, Yang S J, Geng L 2016 Acta Phys. Sin. 65 096101 (in Chinese)[魏绍楼, 黄陆军, 常健, 杨尚京, 耿林 2016 65 096101]

    [15]

    Leonhardt M, Lser W, Lindenkreuz H G 1999 Acta Mater. 47 2961

    [16]

    Royer Z L, Tackes C, Lesar R, Napolitano R E 2013 J. Appl. Phys. 113 214901

    [17]

    Masslaski T B, H Okamoto, P R Subramanian, L Kacprzak 1990 Binary Alloy Diagrams (2nd Ed.) (Geauga: ASM International) pp1208-1209

    [18]

    Boettinger W J, Coriell S R, Trivedi R 1987 Proceedings of the Fourth International Conference on Rapid Solidification Processing: Principles and Technologies (Baton Rouge: Claitor's Publishing Division) pp13-20

    [19]

    Trivedi R, Lipton J, Kurz W 1987 Acta Metall. 35 965

    [20]

    Gale W, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Butterworth-Heinemann Publications) p14-1

    [21]

    Levi C G, Mehrabian R 1982 Metall. Trans. A 13 221

    [22]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [23]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification (third edition) (Aedermannsdorf:Trans. Tech. Publications Ltd) pp34-59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [25]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese)[杨尚京, 王伟丽, 魏炳波 2015 64 056401]

  • [1] Mo Yun-Fei, Jiang Li-Gui, Lang Lin, Wen Da-Dong, Zhang Hai-Tao, Li Yuan, Tian Ze-An, Peng Ping, Liu Rang-Su. Influence of topologically close-packed clusters on the solidification pathway of metallic tantalum liquid under high pressure. Acta Physica Sinica, 2024, 73(21): 216101. doi: 10.7498/aps.73.20241089
    [2] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] Li Lu-Yuan, Ruan Ying, Wei Bing-Bo. Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys. Acta Physica Sinica, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [4] Wu Bo-Qiang, Liu Hai-Rong, Liu Rang-Su, Mo Yun-Fei, Tian Ze-An, Liang Yong-Chao, Guan Shao-Kang, Huang Chang-Xiong. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg. Acta Physica Sinica, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [5] Gu Qian-Qian, Ruan Ying, Dai Fu-Ping. Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition. Acta Physica Sinica, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [6] Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin. Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy. Acta Physica Sinica, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [7] Yang Shang-Jing, Wang Wei-Li, Wei Bing-Bo. Growth mechanisms of dendrites and eutectics within undercooled liquid Al-Ni alloys. Acta Physica Sinica, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [8] Zhao Ning, Zhong Yi, Huang Ming-Liang, Ma Hai-Tao, Liu Xiao-Ping. Effect of thermomigration on the growth kinetics of Cu6Sn5 at liquid-solid interfaces in Cu/Sn/Cu solder joints. Acta Physica Sinica, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [9] Yang Qing-Ling, Tan Yik-Yee, Wu Xing, Sim Kok Swee, Sun Li-Tao. In-situ investigation on the growth of Cu-Al intermetallic compounds in Cu wire bonding. Acta Physica Sinica, 2015, 64(21): 216804. doi: 10.7498/aps.64.216804
    [10] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [11] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [13] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [15] Zhu Chang-Sheng, Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [16] Yin Han-Yu, Lu Xiao-Yu. Rapid solidification of undercooled Cu60Sn30Pb10 monotectic alloy. Acta Physica Sinica, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [17] Mei Ce-Xiang, Ruan Ying, Dai Fu-Ping, Wei Bing-Bo. Phase constitution and solidification characteristics of undercooled Ag-Cu-Ge ternary eutectic alloy. Acta Physica Sinica, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [18] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] Zang Du-Yang, Wang Hai-Peng, Wei Bing-Bo. Rapid dendritic growth in highly undercooled ternary Ni-Cu-Co alloy. Acta Physica Sinica, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [20] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
Metrics
  • Abstract views:  7586
  • PDF Downloads:  237
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2017
  • Accepted Date:  12 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map