-
High-power narrow-linewidth rare-earth-doped fiber lasers, which are well known for their high beam quality and high efficiency properties, have rapidly developed in the last decade, due to the needs of a vast range of applications such as nonlinear frequency conversion, and incoherent spectral beam combination to further scale up the total output power of fiber lasers. At the same time, many efforts have also been made to extend the operating wavelength of narrow-linewidth fiber laser toward the longer mid-infrared wavelength region, which was motivated by a large number of promising applications such as atmosphere monitoring, and pump source for mid-infrared optical parametric oscillator. In most cases, thulium-doped fiber lasers operate efficiently in a wavelength range of 1.8-2.1 m, which could be considered as being one of the most important sources of narrow-linewidth laser radiation that has been developed and intensively investigated in the last several years. Here, we demonstrate a high-power narrow-linewidth continuous-wave thulium-doped all-fiber laser based on master-oscillator power-amplifier (MOPA) configuration. The MOPA yields 342 W of narrow-linewidth laser output at the central wavelength of 2000.3 nm with a 3-dB spectral bandwidth of 90 pm. The beam quality factor is measured to be M2 of 1.15 at an output power of 300 W. No indication of stimulated Brillouin scattering could be observed at the highest output power level, and the output power is only currently limited by 793 nm available pump power. This kind of high-power narrow-linewidth thulium-doped all-fiber MOPA represents a promising achievement in the generation of high-power laser source via incoherent spectral beam combination.
-
Keywords:
- fiber laser /
- fiber amplifier /
- narrow-linewidth laser
[1] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬2014 63 134205]
[2] Dong F L, Ge T W, Zhang X X, Tan Q R, Wang Z Y 2015 Acta Phys. Sin. 64 084205 (in Chinese) [董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇2015 64 084205]
[3] Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349
[4] Schreiber T, Wirth C, Schmidt O, Andersen T V, Tsybin I, Böhme S, Peschel T, Brckner F, Clausnitzer T, Röser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Electron 15 354
[5] Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118
[6] Drachenberg D R, Andrusyak O, Venus G, Smirnov V, Glebov L 2014 Appl. Opt. 53 1242
[7] Goodno G D, Book L D, Rothenberg E 2009 Opt. Lett. 34 1204
[8] Wang X, Zhou P, Wang X, Xiao H, Si L 2013 Opt. Express 21 32386
[9] Pearson L, Kim J W, Zhang Z, Ibsen M, Sahu J K, Clarkson W A 2010 Opt. Express 18 1607
[10] Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Pung A, Poutous M K, Johnson E G, Richardson M 2012 Opt. Express 20 20558
[11] Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Express 22 13572
[12] Liu J, Wang P 2013 Chinese J Laser 40 2001 (in Chinese) [刘江, 王璞2013中国激光40 2001]
[13] Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442
[14] Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150
[15] Simsa R A, Willisa C C C, Kadwania P, McComba T S, Shaha L, Sudesha V, Rothb Z, Poutousb M K, Johnsonb E, Richardson M 2011 Opt. Commun. 284 1988
[16] Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Sincore A, Richardson M 2015 Appl. Opt. 54 757
-
[1] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬2014 63 134205]
[2] Dong F L, Ge T W, Zhang X X, Tan Q R, Wang Z Y 2015 Acta Phys. Sin. 64 084205 (in Chinese) [董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇2015 64 084205]
[3] Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349
[4] Schreiber T, Wirth C, Schmidt O, Andersen T V, Tsybin I, Böhme S, Peschel T, Brckner F, Clausnitzer T, Röser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Electron 15 354
[5] Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118
[6] Drachenberg D R, Andrusyak O, Venus G, Smirnov V, Glebov L 2014 Appl. Opt. 53 1242
[7] Goodno G D, Book L D, Rothenberg E 2009 Opt. Lett. 34 1204
[8] Wang X, Zhou P, Wang X, Xiao H, Si L 2013 Opt. Express 21 32386
[9] Pearson L, Kim J W, Zhang Z, Ibsen M, Sahu J K, Clarkson W A 2010 Opt. Express 18 1607
[10] Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Pung A, Poutous M K, Johnson E G, Richardson M 2012 Opt. Express 20 20558
[11] Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Express 22 13572
[12] Liu J, Wang P 2013 Chinese J Laser 40 2001 (in Chinese) [刘江, 王璞2013中国激光40 2001]
[13] Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442
[14] Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150
[15] Simsa R A, Willisa C C C, Kadwania P, McComba T S, Shaha L, Sudesha V, Rothb Z, Poutousb M K, Johnsonb E, Richardson M 2011 Opt. Commun. 284 1988
[16] Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Sincore A, Richardson M 2015 Appl. Opt. 54 757
Catalog
Metrics
- Abstract views: 7178
- PDF Downloads: 259
- Cited By: 0