-
In this paper, a dissipative soliton mode-locked fiber laser is established based on carbon nanotube in order to study the polarization dynamics of dissipative soliton by using a commercial polarimeter. Under the pump power of 160 mW, stable dissipatives soliton are observed to have a limited cycle polarization trajectory shown on Poincare sphere, indicating the periodic modulation of anisotropy in cavity. The stable dissipative soliton possesses a high signal noise ratio of 57.7 dB at fundamental frequency. Moreover, the fast oscillation of state of polarization leads to a lower degree of polarization (DOP). In addition, the polarization controllers are employed to compensate for the birefringence in the cavity to adjust the ratio between cavity length and birefringence length. As a result, we can observe the polarization evolving from the polarization locked attractor to the limited cycle attractor by adjusting polarization controllers. It is noted that this dynamic polarization trajectory can be manually controlled. By comparing polarization attractor with DOP, it is clear that the size of trajectory shown on Poincare sphere is inversely proportional to DOP. We expect our work to be conducible to studying the physics in lasers and creating a new type of polarization tunable laser.
-
Keywords:
- fiber laser /
- dissipative soliton /
- polarization attractor
[1] Menyuk C R 1987 Opt. Lett. 12 614Google Scholar
[2] Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 1999 Phys. Rev. Lett. 82 3988Google Scholar
[3] Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354Google Scholar
[4] Zhang H, Tang D, Zhao L, Bao Q, Loh K P 2010 Opt. Commun. 283 3334Google Scholar
[5] Mou C, Sergeyev S, Rozhin A, Turistyn S 2011 Opt. Lett. 36 3831Google Scholar
[6] Zhao L M, Tang D Y, Zhang H, Wu X 2008 Opt. Express 16 10053Google Scholar
[7] Song Y F, Zhang H, Tang D Y, Shen D Y 2012 Opt. Express 20 27283Google Scholar
[8] Han M, Zhang S, Li X, Zhang H, Yang H, Yuan T 2015 Opt. Express 23 2424Google Scholar
[9] Tang D Y, Zhang H, Zhao L M, Xiang N, Wu X 2008 Opt. Express 16 9528Google Scholar
[10] Luo Y, Cheng J, Liu B, Sun Q, Li L, Fu S, Tang D, Zhao L, Liu D 2017 Sci. Rep. 7 2369Google Scholar
[11] Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar
[12] Wong J H, Wu K, Liu H H, Ouyang C, Wang H, Aditya S, Shum P, Fu S, Kelleher E J R, Chernov A, Obraztsova E D 2011 Opt. Commun. 284 2007Google Scholar
[13] Ning Q Y, Liu H, Zheng X W, Yu W, Luo A P, Huang X G, Luo Z C, Xu W C, Xu S H, Yang Z M 2014 Opt. Express 22 11900Google Scholar
[14] Wang Z, Wang B, Wang K, Long H, Lu P 2016 Opt. Lett. 41 3619Google Scholar
[15] Song Y, Shi X, Wu C, Tang D, Zhang H 2019 Appl. Phys. Rev. 6 021313Google Scholar
[16] Sergeyev S V, Mou C, Rozhin A, Turitsyn S K 2012 Opt. Express 20 27434Google Scholar
[17] Mou C, Sergeyev S V, Rozhin A G, Turitsyn S K 2013 Opt. Express 21 26868Google Scholar
[18] Tsatourian V, Sergeyev S V, Mou C, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, Turitsyn S K 2013 Sci. Rep. 3 3154Google Scholar
[19] Habruseva T, Sergeyev S, Turitsyn S 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8–13, 2014 paper JTh2A.26
[20] Sergeyev S V, Mou C, Turitsyna E G, Rozhin A, Turitsyn S K, Blow K 2014 Light Sci. Appl. 3 e131Google Scholar
[21] Kbashi H, Sergeyev S V, Mou C, Garcia A M, Araimi M A, Rozhin A, Kolpakov S, Kalashnikov V 2018 Annalen der Physik 530 1700362Google Scholar
[22] Kbashi H J, Sergeyev S V, Araimi M A, Tarasov N, Rozhin A 2019 Laser Phys. Lett. 16 035103Google Scholar
[23] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar
[24] Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W, Liu X L, Jia Y, Gao C X, Zhang W, Yang Z, Li C, Shen D Y 2012 IEEE Photonics J. 4 234Google Scholar
[25] Zhdanovich S, Milner A A, Bloomquist C, Floss J, Averbukh I, Hepburn J W, Milner V 2011 Phys. Rev. Lett. 107 243004Google Scholar
[26] Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar
[27] VanWiggeren G D, Roy R 2002 Phys. Rev. Lett. 88 097903Google Scholar
-
图 2 偏振进动VDS (a) 典型耗散孤子光谱; (b) 示波器脉冲序列; (c) 基频处的信噪比, 插图为3 GHz带宽的射频谱; (d) 庞加莱球上偏振态演化轨迹; (e)正交偏振分量的功率; (f) DOP和相位差
Figure 2. Polarization precessing VDS: (a) Typical dissipative optical spectrum; (b) pulse trains measured by oscilloscope; (c) signal noise ratio at fundamental frequency where the inset shows radio-frequency spectrum over 3 GHz; (d) polarization evolution trace shown on Poincare sphere; (e) power of two orthogonal polarization states; (f) DOP and phase difference.
-
[1] Menyuk C R 1987 Opt. Lett. 12 614Google Scholar
[2] Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 1999 Phys. Rev. Lett. 82 3988Google Scholar
[3] Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354Google Scholar
[4] Zhang H, Tang D, Zhao L, Bao Q, Loh K P 2010 Opt. Commun. 283 3334Google Scholar
[5] Mou C, Sergeyev S, Rozhin A, Turistyn S 2011 Opt. Lett. 36 3831Google Scholar
[6] Zhao L M, Tang D Y, Zhang H, Wu X 2008 Opt. Express 16 10053Google Scholar
[7] Song Y F, Zhang H, Tang D Y, Shen D Y 2012 Opt. Express 20 27283Google Scholar
[8] Han M, Zhang S, Li X, Zhang H, Yang H, Yuan T 2015 Opt. Express 23 2424Google Scholar
[9] Tang D Y, Zhang H, Zhao L M, Xiang N, Wu X 2008 Opt. Express 16 9528Google Scholar
[10] Luo Y, Cheng J, Liu B, Sun Q, Li L, Fu S, Tang D, Zhao L, Liu D 2017 Sci. Rep. 7 2369Google Scholar
[11] Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar
[12] Wong J H, Wu K, Liu H H, Ouyang C, Wang H, Aditya S, Shum P, Fu S, Kelleher E J R, Chernov A, Obraztsova E D 2011 Opt. Commun. 284 2007Google Scholar
[13] Ning Q Y, Liu H, Zheng X W, Yu W, Luo A P, Huang X G, Luo Z C, Xu W C, Xu S H, Yang Z M 2014 Opt. Express 22 11900Google Scholar
[14] Wang Z, Wang B, Wang K, Long H, Lu P 2016 Opt. Lett. 41 3619Google Scholar
[15] Song Y, Shi X, Wu C, Tang D, Zhang H 2019 Appl. Phys. Rev. 6 021313Google Scholar
[16] Sergeyev S V, Mou C, Rozhin A, Turitsyn S K 2012 Opt. Express 20 27434Google Scholar
[17] Mou C, Sergeyev S V, Rozhin A G, Turitsyn S K 2013 Opt. Express 21 26868Google Scholar
[18] Tsatourian V, Sergeyev S V, Mou C, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, Turitsyn S K 2013 Sci. Rep. 3 3154Google Scholar
[19] Habruseva T, Sergeyev S, Turitsyn S 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8–13, 2014 paper JTh2A.26
[20] Sergeyev S V, Mou C, Turitsyna E G, Rozhin A, Turitsyn S K, Blow K 2014 Light Sci. Appl. 3 e131Google Scholar
[21] Kbashi H, Sergeyev S V, Mou C, Garcia A M, Araimi M A, Rozhin A, Kolpakov S, Kalashnikov V 2018 Annalen der Physik 530 1700362Google Scholar
[22] Kbashi H J, Sergeyev S V, Araimi M A, Tarasov N, Rozhin A 2019 Laser Phys. Lett. 16 035103Google Scholar
[23] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar
[24] Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W, Liu X L, Jia Y, Gao C X, Zhang W, Yang Z, Li C, Shen D Y 2012 IEEE Photonics J. 4 234Google Scholar
[25] Zhdanovich S, Milner A A, Bloomquist C, Floss J, Averbukh I, Hepburn J W, Milner V 2011 Phys. Rev. Lett. 107 243004Google Scholar
[26] Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar
[27] VanWiggeren G D, Roy R 2002 Phys. Rev. Lett. 88 097903Google Scholar
Catalog
Metrics
- Abstract views: 5795
- PDF Downloads: 116
- Cited By: 0