Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on dissipative soliton fiber laser with dynamically tunable polarization trajectory

Zhao Chang Huang Qian-Qian Huang Zi-Nan Dai Li-Long Sergeyev Sergey Rozhin Aleksey Mou Cheng-Bo

Citation:

Experimental study on dissipative soliton fiber laser with dynamically tunable polarization trajectory

Zhao Chang, Huang Qian-Qian, Huang Zi-Nan, Dai Li-Long, Sergeyev Sergey, Rozhin Aleksey, Mou Cheng-Bo
cstr: 32037.14.aps.69.20201305
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, a dissipative soliton mode-locked fiber laser is established based on carbon nanotube in order to study the polarization dynamics of dissipative soliton by using a commercial polarimeter. Under the pump power of 160 mW, stable dissipatives soliton are observed to have a limited cycle polarization trajectory shown on Poincare sphere, indicating the periodic modulation of anisotropy in cavity. The stable dissipative soliton possesses a high signal noise ratio of 57.7 dB at fundamental frequency. Moreover, the fast oscillation of state of polarization leads to a lower degree of polarization (DOP). In addition, the polarization controllers are employed to compensate for the birefringence in the cavity to adjust the ratio between cavity length and birefringence length. As a result, we can observe the polarization evolving from the polarization locked attractor to the limited cycle attractor by adjusting polarization controllers. It is noted that this dynamic polarization trajectory can be manually controlled. By comparing polarization attractor with DOP, it is clear that the size of trajectory shown on Poincare sphere is inversely proportional to DOP. We expect our work to be conducible to studying the physics in lasers and creating a new type of polarization tunable laser.
      Corresponding author: Mou Cheng-Bo, mouc1@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975107, 61605107) and the “111” project Ministry of Education of China (Grant No. D20031)
    [1]

    Menyuk C R 1987 Opt. Lett. 12 614Google Scholar

    [2]

    Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 1999 Phys. Rev. Lett. 82 3988Google Scholar

    [3]

    Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354Google Scholar

    [4]

    Zhang H, Tang D, Zhao L, Bao Q, Loh K P 2010 Opt. Commun. 283 3334Google Scholar

    [5]

    Mou C, Sergeyev S, Rozhin A, Turistyn S 2011 Opt. Lett. 36 3831Google Scholar

    [6]

    Zhao L M, Tang D Y, Zhang H, Wu X 2008 Opt. Express 16 10053Google Scholar

    [7]

    Song Y F, Zhang H, Tang D Y, Shen D Y 2012 Opt. Express 20 27283Google Scholar

    [8]

    Han M, Zhang S, Li X, Zhang H, Yang H, Yuan T 2015 Opt. Express 23 2424Google Scholar

    [9]

    Tang D Y, Zhang H, Zhao L M, Xiang N, Wu X 2008 Opt. Express 16 9528Google Scholar

    [10]

    Luo Y, Cheng J, Liu B, Sun Q, Li L, Fu S, Tang D, Zhao L, Liu D 2017 Sci. Rep. 7 2369Google Scholar

    [11]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [12]

    Wong J H, Wu K, Liu H H, Ouyang C, Wang H, Aditya S, Shum P, Fu S, Kelleher E J R, Chernov A, Obraztsova E D 2011 Opt. Commun. 284 2007Google Scholar

    [13]

    Ning Q Y, Liu H, Zheng X W, Yu W, Luo A P, Huang X G, Luo Z C, Xu W C, Xu S H, Yang Z M 2014 Opt. Express 22 11900Google Scholar

    [14]

    Wang Z, Wang B, Wang K, Long H, Lu P 2016 Opt. Lett. 41 3619Google Scholar

    [15]

    Song Y, Shi X, Wu C, Tang D, Zhang H 2019 Appl. Phys. Rev. 6 021313Google Scholar

    [16]

    Sergeyev S V, Mou C, Rozhin A, Turitsyn S K 2012 Opt. Express 20 27434Google Scholar

    [17]

    Mou C, Sergeyev S V, Rozhin A G, Turitsyn S K 2013 Opt. Express 21 26868Google Scholar

    [18]

    Tsatourian V, Sergeyev S V, Mou C, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, Turitsyn S K 2013 Sci. Rep. 3 3154Google Scholar

    [19]

    Habruseva T, Sergeyev S, Turitsyn S 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8–13, 2014 paper JTh2A.26

    [20]

    Sergeyev S V, Mou C, Turitsyna E G, Rozhin A, Turitsyn S K, Blow K 2014 Light Sci. Appl. 3 e131Google Scholar

    [21]

    Kbashi H, Sergeyev S V, Mou C, Garcia A M, Araimi M A, Rozhin A, Kolpakov S, Kalashnikov V 2018 Annalen der Physik 530 1700362Google Scholar

    [22]

    Kbashi H J, Sergeyev S V, Araimi M A, Tarasov N, Rozhin A 2019 Laser Phys. Lett. 16 035103Google Scholar

    [23]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [24]

    Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W, Liu X L, Jia Y, Gao C X, Zhang W, Yang Z, Li C, Shen D Y 2012 IEEE Photonics J. 4 234Google Scholar

    [25]

    Zhdanovich S, Milner A A, Bloomquist C, Floss J, Averbukh I, Hepburn J W, Milner V 2011 Phys. Rev. Lett. 107 243004Google Scholar

    [26]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [27]

    VanWiggeren G D, Roy R 2002 Phys. Rev. Lett. 88 097903Google Scholar

  • 图 1  基于碳纳米管聚合物薄膜的锁模光纤激光器实验装置

    Figure 1.  Schematic configuration of mode-locked all-fiber laser based on CNT-PVA film.

    图 2  偏振进动VDS (a) 典型耗散孤子光谱; (b) 示波器脉冲序列; (c) 基频处的信噪比, 插图为3 GHz带宽的射频谱; (d) 庞加莱球上偏振态演化轨迹; (e)正交偏振分量的功率; (f) DOP和相位差

    Figure 2.  Polarization precessing VDS: (a) Typical dissipative optical spectrum; (b) pulse trains measured by oscilloscope; (c) signal noise ratio at fundamental frequency where the inset shows radio-frequency spectrum over 3 GHz; (d) polarization evolution trace shown on Poincare sphere; (e) power of two orthogonal polarization states; (f) DOP and phase difference.

    图 3  160 mW抽运功率下偏振吸引子的动态调控 (a) 单向调节PC对应偏振吸引子的变化; (b)对应光谱变化; (c)对应DOP的变化

    Figure 3.  Dynamic adjustment of polarization attractor under the pump power of 160 mW: (a) Change of polarization by adjusting PC in one direction; (b) change of optical spectrum; (c) change of DOP.

    Baidu
  • [1]

    Menyuk C R 1987 Opt. Lett. 12 614Google Scholar

    [2]

    Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 1999 Phys. Rev. Lett. 82 3988Google Scholar

    [3]

    Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354Google Scholar

    [4]

    Zhang H, Tang D, Zhao L, Bao Q, Loh K P 2010 Opt. Commun. 283 3334Google Scholar

    [5]

    Mou C, Sergeyev S, Rozhin A, Turistyn S 2011 Opt. Lett. 36 3831Google Scholar

    [6]

    Zhao L M, Tang D Y, Zhang H, Wu X 2008 Opt. Express 16 10053Google Scholar

    [7]

    Song Y F, Zhang H, Tang D Y, Shen D Y 2012 Opt. Express 20 27283Google Scholar

    [8]

    Han M, Zhang S, Li X, Zhang H, Yang H, Yuan T 2015 Opt. Express 23 2424Google Scholar

    [9]

    Tang D Y, Zhang H, Zhao L M, Xiang N, Wu X 2008 Opt. Express 16 9528Google Scholar

    [10]

    Luo Y, Cheng J, Liu B, Sun Q, Li L, Fu S, Tang D, Zhao L, Liu D 2017 Sci. Rep. 7 2369Google Scholar

    [11]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [12]

    Wong J H, Wu K, Liu H H, Ouyang C, Wang H, Aditya S, Shum P, Fu S, Kelleher E J R, Chernov A, Obraztsova E D 2011 Opt. Commun. 284 2007Google Scholar

    [13]

    Ning Q Y, Liu H, Zheng X W, Yu W, Luo A P, Huang X G, Luo Z C, Xu W C, Xu S H, Yang Z M 2014 Opt. Express 22 11900Google Scholar

    [14]

    Wang Z, Wang B, Wang K, Long H, Lu P 2016 Opt. Lett. 41 3619Google Scholar

    [15]

    Song Y, Shi X, Wu C, Tang D, Zhang H 2019 Appl. Phys. Rev. 6 021313Google Scholar

    [16]

    Sergeyev S V, Mou C, Rozhin A, Turitsyn S K 2012 Opt. Express 20 27434Google Scholar

    [17]

    Mou C, Sergeyev S V, Rozhin A G, Turitsyn S K 2013 Opt. Express 21 26868Google Scholar

    [18]

    Tsatourian V, Sergeyev S V, Mou C, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, Turitsyn S K 2013 Sci. Rep. 3 3154Google Scholar

    [19]

    Habruseva T, Sergeyev S, Turitsyn S 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8–13, 2014 paper JTh2A.26

    [20]

    Sergeyev S V, Mou C, Turitsyna E G, Rozhin A, Turitsyn S K, Blow K 2014 Light Sci. Appl. 3 e131Google Scholar

    [21]

    Kbashi H, Sergeyev S V, Mou C, Garcia A M, Araimi M A, Rozhin A, Kolpakov S, Kalashnikov V 2018 Annalen der Physik 530 1700362Google Scholar

    [22]

    Kbashi H J, Sergeyev S V, Araimi M A, Tarasov N, Rozhin A 2019 Laser Phys. Lett. 16 035103Google Scholar

    [23]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [24]

    Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W, Liu X L, Jia Y, Gao C X, Zhang W, Yang Z, Li C, Shen D Y 2012 IEEE Photonics J. 4 234Google Scholar

    [25]

    Zhdanovich S, Milner A A, Bloomquist C, Floss J, Averbukh I, Hepburn J W, Milner V 2011 Phys. Rev. Lett. 107 243004Google Scholar

    [26]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [27]

    VanWiggeren G D, Roy R 2002 Phys. Rev. Lett. 88 097903Google Scholar

Metrics
  • Abstract views:  7813
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2020
  • Accepted Date:  27 August 2020
  • Available Online:  16 September 2020
  • Published Online:  20 September 2020
  • /

    返回文章
    返回
    Baidu
    map