Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and characteristics of shock optical pulses based on a fiber-loop time-lens system

Xiao Hong-Jing Huang Chao Tang Yu-Long Xu Jian-Qiu

Citation:

Generation and characteristics of shock optical pulses based on a fiber-loop time-lens system

Xiao Hong-Jing, Huang Chao, Tang Yu-Long, Xu Jian-Qiu
PDF
HTML
Get Citation
  • The shock ignition scheme has the advantages of low ignition energy threshold, high gain, and good hydrodynamic stability, which has become one of the key schemes for the potentially successful ignition of inertial confinement fusion. The crucial element of shock ignition is how to achieve a highly efficient shock laser pulse. We propose a new scheme based on a time-lens system combining the fiber-loop phase modulation and the grating-pair compression to generate a highly controllable shock pulse. Based on the asymmetric phase modulation in time-domain followed by linear dispersion compensation in frequency domain, the shock pulse can be actively controlled with high precision in both pulse duration and pulse contrast (peak power ratio of the compression part to the shock part of the pulse). We construct a theoretical model based on the nonlinear Schrödinger equation to simulate the evolution of the spectrum and temporal shape of the shock laser pulse. The influences of various key parameters of the proposed system on the characteristics of the generated shock pulse are analyzed in depth. The time lens system consists of three parts, i.e. the seed pulse carving part, the phase modulation loop, and the chirp-compensating grating pair. The operation principle of this system for generating shock pulse is as follows. First, a single-mode continuous wave 1053 nm distributed feedback seed laser is chopped into pulses with a Mach-Zehnder intensity modulator. Then the pulses enter into a fiber-loop for phase modulation. Owing to different modulation frequencies exerted on the left and right side of the pulse, the amount of spectral broadening of these two sides of the spectrum are also different after phase modulation. The spectrally broadened pulses are linearly chirped when the phase-modulation function has a parabolic shape. Finally, the pulse transits through a grating pair system for chirp compensating. Just like an anomalous dispersion delay line, the grating pair applies an anomalous group velocity dispersion to the passing optical pulse. When the chirp is compensated for appropriately, the pulse will be compressed. What the target pulse can be finally shaped into is dependent on the combined optimization of all the above processes.The simulation results show that by systematically designing the parameters such as chopping function, phase modulation function, modulation depth, modulation frequency, and chirp compensating, the target shock pulse can be actively controlled with high-precision in the pulse width, pulse rising edge, and peak-power contrast. In addition, we can also tune only one parameter (such as the pulse width) of the pulse, with the other parameters kept unchanged. This new design idea and the proposed system can actively and independently adjust the two key parameters (the peak power contrast and the pulse width) of the generated shock pulse, which is not only helpful in deepening our understanding of the principle of laser-pulse shaping, but also significant for the subsequent practical implement of shock ignition of inertial confinement fusion.
      Corresponding author: Tang Yu-Long, yulong@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675129, 61275136, 61138006, 11121504).
    [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Lowdermilk W H 1997 Proc. SPIE 3047 16Google Scholar

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [6]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [9]

    Cristoforetti G, Antonelli L, Atzeni S, Baffigi F, Barbato F, Batani D, Boutoux G, Colaitis A, Dostal J, Dudzak R, Juha L, Koester P, Marocchino A, Mancelli D, Nicolai P, Renner O, Santos J J, Schiavi A, Skoric M M, Smid M, Straka P, Gizzi L A 2018 Phys. Plasmas 25 012702Google Scholar

    [10]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 015202Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202Google Scholar

    [11]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [12]

    Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310

    [13]

    Nora R, Theobald W, Betti R, Marshall F J, Michel D T, Seka W, Yaakobi B, Lafon M, Stoeckl C, Delettrez J, Solodov A A, Casner A, Reverdin C, Ribeyre X, Vallet A, Peebles J, Beg F N, Wei M S 2015 Phys. Rev. Lett. 114 045001Google Scholar

    [14]

    Casner A, Caillaud T, Darbon S, Duval A, Thfouin I, Jadaud J P, LeBreton J P, Reverdin C, Rosse B, Rosch R, Blanchot N, Villette B, Wrobel R, Miquel J L 2015 High Energy Density Phys. 17 2Google Scholar

    [15]

    Batani D, Koenig M, Baton S, Perez F, Gizzi L A, Koester P, Labate L, Honrubia J, Antonelli L, Morace A, Volpe L, Santos J, Schurtz G, Hulin S, Ribeyre X, Fourment C, Nicolai P, Vauzour B, Gremillet L, Nazarov W, Pasley J, Richetta M, Lancaster K, Spindloe Ch, Tolley M, Neely D, Kozlová M, Nejdl J, Rus B, Wolowski J, Badziak J, Dorchies F 2011 Plasma Phys. Controll. Fusion 53 124041Google Scholar

    [16]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 045207Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207Google Scholar

    [17]

    Batani D, Baton S, Casner A, Depierreux S, Hohenberger M, Klimo O, Koenig M, Labaune C, Ribeyre X, Rousseaux C, Schurtz G, Theobald W, Tikhonchuk V T 2014 Nucl. Fusion 54 054009Google Scholar

    [18]

    Perkins L J, Betti R, LaFortune K N, Williams W H 2009 Phys. Rev. Lett. 103 045004Google Scholar

    [19]

    袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 61 114206Google Scholar

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206Google Scholar

    [20]

    Howe J V, Lee J H, Xu C 2007 Opt. Lett. 32 1408Google Scholar

    [21]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [22]

    Backus S, Durfee C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

  • 图 1  时间透镜装置图(MZ, 马赫-曾德尔调制器; YDFA, 掺镱光纤放大器; AWG, 任意波形发生器; BPF, 带通滤波器; PM, 位相调制器; G1和G2, 光栅1和光栅2)

    Figure 1.  Schematic setup of the time lens concept (MZ, Mach-Zehnder modulator; YDFA, ytterbium-doped fiber amplifier; AWG, arbitrary waveform generator; BPF, band-pass filter; PM, phase modulator; G1 and G2, grating1 and grating2).

    图 2  强度调制器斩波出的脉冲频谱(a)与波形(b)

    Figure 2.  Spectrum (a) and pulseshape (b) of the seed laser after the intensity modulator.

    图 3  相位调制函数图

    Figure 3.  Diagram of phase modulation function.

    图 4  考虑色散与非线性效应时脉冲信号经过光纤环不同圈数相位调制之后的频谱(a)与脉冲(b) 的演化

    Figure 4.  Evolution of the spectrum (a) and shape (b) of the pulse after different round trips of phase modulation (before compression) when the dispersion and nonlinear effects of fibers are included.

    图 5  不同光栅对距离对最终输出脉冲的影响(光纤环环绕圈数设定为55圈, 光栅对角度设定为30°)

    Figure 5.  Final output pulse shape with different grating-pair distance settings (the number of fiber loops is set to 20 turns and the grating pair angle is set to 30 degrees).

    图 6  输入脉冲陡峭度对经过时间透镜系统之后的频谱展宽(a)和脉冲波形(b)的影响

    Figure 6.  Influences of the input pulse shape (different orders of Gaussian function) on the spectrum (a) and pulse shape (b) of the output pulse after being operated by the time lens system.

    图 7  压缩量一定时, 频谱展宽量不一样时被压缩输出后的脉冲 (a), (b) 表示调制深度不同的情况下, 频谱展宽与被压缩输出后的脉冲; (c), (d) 表示相位调制次数不同, 频谱展宽与被压缩输出后的脉冲

    Figure 7.  Output pulse after different amount of spectrum broadening when the amount of compression is constant: (a), (b) Broadening spectrum and the output pulse after different modulation depth; (c), (d) the broadening spectrum and output pulse after different round trips.

    图 8  不同参数设计下最终压缩输出的脉冲 (a) 控制冲击脉冲宽度不变, 改变冲击脉冲峰值功率对比度; (b) 控制冲击脉冲峰值功率之比不变, 改变冲击脉冲宽度

    Figure 8.  Final output pulse under different combined-parameter design: (a) Tuning the ratio of the peak power of the shock pulse and the compress pulse while keeping the shock pulse width unchanged; (b) modifying the shock pulse width while keeping the ratio of the peak power of the shock pulse to the compress pulse unchanged.

    Baidu
  • [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Lowdermilk W H 1997 Proc. SPIE 3047 16Google Scholar

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [6]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [9]

    Cristoforetti G, Antonelli L, Atzeni S, Baffigi F, Barbato F, Batani D, Boutoux G, Colaitis A, Dostal J, Dudzak R, Juha L, Koester P, Marocchino A, Mancelli D, Nicolai P, Renner O, Santos J J, Schiavi A, Skoric M M, Smid M, Straka P, Gizzi L A 2018 Phys. Plasmas 25 012702Google Scholar

    [10]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 015202Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202Google Scholar

    [11]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [12]

    Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310

    [13]

    Nora R, Theobald W, Betti R, Marshall F J, Michel D T, Seka W, Yaakobi B, Lafon M, Stoeckl C, Delettrez J, Solodov A A, Casner A, Reverdin C, Ribeyre X, Vallet A, Peebles J, Beg F N, Wei M S 2015 Phys. Rev. Lett. 114 045001Google Scholar

    [14]

    Casner A, Caillaud T, Darbon S, Duval A, Thfouin I, Jadaud J P, LeBreton J P, Reverdin C, Rosse B, Rosch R, Blanchot N, Villette B, Wrobel R, Miquel J L 2015 High Energy Density Phys. 17 2Google Scholar

    [15]

    Batani D, Koenig M, Baton S, Perez F, Gizzi L A, Koester P, Labate L, Honrubia J, Antonelli L, Morace A, Volpe L, Santos J, Schurtz G, Hulin S, Ribeyre X, Fourment C, Nicolai P, Vauzour B, Gremillet L, Nazarov W, Pasley J, Richetta M, Lancaster K, Spindloe Ch, Tolley M, Neely D, Kozlová M, Nejdl J, Rus B, Wolowski J, Badziak J, Dorchies F 2011 Plasma Phys. Controll. Fusion 53 124041Google Scholar

    [16]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 045207Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207Google Scholar

    [17]

    Batani D, Baton S, Casner A, Depierreux S, Hohenberger M, Klimo O, Koenig M, Labaune C, Ribeyre X, Rousseaux C, Schurtz G, Theobald W, Tikhonchuk V T 2014 Nucl. Fusion 54 054009Google Scholar

    [18]

    Perkins L J, Betti R, LaFortune K N, Williams W H 2009 Phys. Rev. Lett. 103 045004Google Scholar

    [19]

    袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 61 114206Google Scholar

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206Google Scholar

    [20]

    Howe J V, Lee J H, Xu C 2007 Opt. Lett. 32 1408Google Scholar

    [21]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [22]

    Backus S, Durfee C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

  • [1] Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin. Illumination homogenization of highly coherent light source based on phase modulation. Acta Physica Sinica, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong. Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time. Acta Physica Sinica, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [5] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [6] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao. Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation. Acta Physica Sinica, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [8] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] Luo Bo-Wen, Dong Jian-Ji, Wang Xiao, Huang De-Xiu, Zhang Xin-Liang. Multi-channel multifunctional optical differentiator based on phase modulation and linear filtering. Acta Physica Sinica, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [10] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [11] Li Bo, Lou Shu-Qin, Tan Zhong-Wei, Su Wei. Two kinds of optical pulse compression approaches based on cross phase modulation. Acta Physica Sinica, 2012, 61(19): 194203. doi: 10.7498/aps.61.194203
    [12] Li Bo, Tan Zhong-Wei, Zhang Xiao-Xing. Simulation and analysis of time lens using cross phase modulation and four-wave mixing. Acta Physica Sinica, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [13] Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia. Conceptual research on modifications of indirect drive laser facilities for shock ignition. Acta Physica Sinica, 2012, 61(11): 114206. doi: 10.7498/aps.61.114206
    [14] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [15] Li Bo, Tan Zhong-Wei, Zhang Xiao-Xing. Experiment and simulation of time lens using electro-opticphase modulation and cross phase modulation. Acta Physica Sinica, 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [16] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Study on the mechanism of shock ignition in laser fusion. Acta Physica Sinica, 2011, 60(1): 015202. doi: 10.7498/aps.60.015202
    [17] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Performance of shock ignition with varying ignitor. Acta Physica Sinica, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [18] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
Metrics
  • Abstract views:  8302
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2019
  • Accepted Date:  22 April 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回
Baidu
map