-
A femtosecond laser source tuned from red to mid-infrared is demonstrated. It is based on intracavity sum frequency generation of a MgO-doped periodically poled LiNbO3 optical parametric oscillator synchronously pumped by mode-locked Yb large-mode-area photonic crystal fiber, which has high average power and high repetition rate. The optical parametric oscillator has a wide spectral tuning range from 1450–2200 nm (for the signal) and 2250–4000 nm (for the idler) while the wavelength of the pump is 1040 nm. In the experiment, the output power of 374 mW at 1502 nm is achieved when the pump power is 2 W and the slope efficiency is 18.7%. In addition, 166 mW idler at 3.4 μm are achieved. By using a β-BaB2O4 for intracavity sum frequency generation, the femtosecond pulse over 610–668 nm is obtained. A 694 mW average output power of sum frequency generation is achieved for 4.1 W pump, representing 16.9% conversion efficiency at 615 nm.
-
Keywords:
- optical parametric oscillator /
- fiber laser /
- mid-infrared /
- intracavity sum frequency generation
[1] Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142
[2] Ruebel F, Haag P, Lhuillier J A 2008 Appl. Phys. Lett. 92 011122
[3] Lin X C, Zhang Y, Kong Y P, Zhang J, Yao A Y, Hou W, Cui D F, Li R N, Xu Z Y, Li J 2004 Chin. Phys. Lett. 21 98
[4] Zhang B G, Yao J Q, Zhang H, Zang G Y, Xu D G, Wang T, Li X J, Wang P 2003 Chin. Phys. Lett. 20 1077
[5] Pavel N, Shoji I, Taira T, Mizuuchi K, Morikawa A, Sugita T, Yamamoto K 2004 Opt. Lett. 29 830
[6] Kontur F J, Dajani I, Lu Y, Knize R J 2007 Opt. Express 15 12882
[7] Yin M, Zhou S H, F G Y 2012 Acta Phys. Sin. 61 234206 (in Chinese) [阴明, 周寿桓, 冯国英 2012 61 234206]
[8] Liu H K, He B, Zhou J, Dong J J, Wei Y R, Lou Q H 2012 Opt. Lett. 37 388
[9] Wu B, Cai S S, Shen J W, Shen Y H 2007 Acta Phys. Sin. 56 2684 (in Chinese) [吴波, 蔡双双, 沈剑威 2007 56 2684]
[10] Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 6921 (in Chinese) [刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 57 6921]
[11] Lin S T, Lin Y Y, Tu R Y, Wang T D, Huang Y C 2010 Opt. Express 18 2361
[12] Chaitanya K S, Kimmelma O, Ebrahim Z M 2012 Opt. Lett. 37 1577
[13] Ellingson R J, Tang C L 1993 Opt. Lett. 18 438
[14] Shirakawa A, Mao H W, Kobayashi T 1996 Opt. Commun. 123 121
-
[1] Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142
[2] Ruebel F, Haag P, Lhuillier J A 2008 Appl. Phys. Lett. 92 011122
[3] Lin X C, Zhang Y, Kong Y P, Zhang J, Yao A Y, Hou W, Cui D F, Li R N, Xu Z Y, Li J 2004 Chin. Phys. Lett. 21 98
[4] Zhang B G, Yao J Q, Zhang H, Zang G Y, Xu D G, Wang T, Li X J, Wang P 2003 Chin. Phys. Lett. 20 1077
[5] Pavel N, Shoji I, Taira T, Mizuuchi K, Morikawa A, Sugita T, Yamamoto K 2004 Opt. Lett. 29 830
[6] Kontur F J, Dajani I, Lu Y, Knize R J 2007 Opt. Express 15 12882
[7] Yin M, Zhou S H, F G Y 2012 Acta Phys. Sin. 61 234206 (in Chinese) [阴明, 周寿桓, 冯国英 2012 61 234206]
[8] Liu H K, He B, Zhou J, Dong J J, Wei Y R, Lou Q H 2012 Opt. Lett. 37 388
[9] Wu B, Cai S S, Shen J W, Shen Y H 2007 Acta Phys. Sin. 56 2684 (in Chinese) [吴波, 蔡双双, 沈剑威 2007 56 2684]
[10] Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 6921 (in Chinese) [刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 57 6921]
[11] Lin S T, Lin Y Y, Tu R Y, Wang T D, Huang Y C 2010 Opt. Express 18 2361
[12] Chaitanya K S, Kimmelma O, Ebrahim Z M 2012 Opt. Lett. 37 1577
[13] Ellingson R J, Tang C L 1993 Opt. Lett. 18 438
[14] Shirakawa A, Mao H W, Kobayashi T 1996 Opt. Commun. 123 121
Catalog
Metrics
- Abstract views: 7109
- PDF Downloads: 797
- Cited By: 0