-
In order to study the effect of ion implantation on the in-plane magnetic anisotropy of epitaxial magnetic films, a 3-nm Al buffer layer is epitaxially grown on an Si (111) substrate with a miscut angle, and then 25-nm Fe is grown on the buffer layer. High-resolution X-ray diffraction reveals that the epitaxial Fe film has a (111)-oriented bcc structure. The epitaxial Fe films are implanted by 10 keV N+ ions with dose up to 5 × 1016 ions/cm2. The change and mechanism of the in-plane magnetic anisotropy of the epitaxial Fe film are studied systematically. It is found that the in-plane magnetic anisotropy of the epitaxial Fe film is gradually changed from two-fold to six-fold symmetry with the increase of N+ implantation dose. It is confirmed by transmission electron microscopy and etching experiments that ion implantation changes the surface and interface state of Fe film. This result is consistent with the result from the SRIM software simulation. The in-plane magnetic uniaxial anisotropy of epitaxial Fe film comes from atomic steps at the surface and the interface of the Fe film. These steps result from Si (111) substrate with a miscut angle. Ion implantation has effects on sputtering and atomic diffusion. The sputtering effect causes the step at the surface of the Fe film to be erased, and the diffusion of the atom leads the step at the interface of the Fe film to disappear. The in-plane uniaxial anisotropy induced by the atomic step is weakened, and the magnetocrystalline anisotropy induced by the Fe (111) plane is dominant. Therefore, the epitaxial Fe film exhibits Fe (111) plane induced six-fold magnetic symmetry after high-dose N+ implantation. This work indicates that the in-plane magnetic anisotropy of Fe films epitaxially grown on Si (111) substrate with miscut angle can be modified and precisely controlled by ion implantation. This work may be of practical significance for improving the density of in-plane magnetic recording material.
-
Keywords:
- epitaxial Fe films /
- ion implantation /
- magnetic anisotropy
[1] 杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[2] Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832
Google Scholar
[3] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 67 016104
Google Scholar
Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104
Google Scholar
[4] Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427
Google Scholar
[5] 丁斌峰, 相凤华, 王立明, 王洪涛 2012 61 046105
Google Scholar
Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105
Google Scholar
[6] Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435
Google Scholar
[7] Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422
Google Scholar
[8] McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090
Google Scholar
[9] Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206
Google Scholar
[10] Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418
Google Scholar
[11] Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501
Google Scholar
[12] Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917
Google Scholar
[13] Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502
Google Scholar
[14] Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267
Google Scholar
[15] Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410
Google Scholar
[16] Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502
Google Scholar
[17] Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71
Google Scholar
[18] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818
Google Scholar
[19] Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148
Google Scholar
[20] Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916
Google Scholar
[21] Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105
Google Scholar
[22] Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105
Google Scholar
[23] Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948
Google Scholar
[24] Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608
Google Scholar
[25] Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547
Google Scholar
[26] 黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4
Google Scholar
Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4
Google Scholar
[27] Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311
Google Scholar
[28] 李华, 郭党委 2015 实验技术与管理 32 51
Google Scholar
Li H, Guo D W 2015 Experimental Technology and Management 32 51
Google Scholar
-
图 4 不同剂量离子注入样品的切面高分辨TEM (a) 未注入样品; (b) 辐照剂量为5 × 1015 ions/cm2; (c) 辐照剂量为5 × 1016 ions/cm2
Figure 4. Cross-sectional TEM images for the as-deposited and implanted samples with a series of different N+ dose: (a) The as-deposited samples; (b) the irradiated samples dose of 5 × 1015 ions/cm2; (c) the irradiated samples dose of 5 × 1016 ions/cm2.
-
[1] 杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[2] Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832
Google Scholar
[3] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 67 016104
Google Scholar
Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104
Google Scholar
[4] Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427
Google Scholar
[5] 丁斌峰, 相凤华, 王立明, 王洪涛 2012 61 046105
Google Scholar
Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105
Google Scholar
[6] Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435
Google Scholar
[7] Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422
Google Scholar
[8] McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090
Google Scholar
[9] Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206
Google Scholar
[10] Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418
Google Scholar
[11] Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501
Google Scholar
[12] Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917
Google Scholar
[13] Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502
Google Scholar
[14] Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267
Google Scholar
[15] Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410
Google Scholar
[16] Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502
Google Scholar
[17] Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71
Google Scholar
[18] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818
Google Scholar
[19] Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148
Google Scholar
[20] Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916
Google Scholar
[21] Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105
Google Scholar
[22] Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105
Google Scholar
[23] Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948
Google Scholar
[24] Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608
Google Scholar
[25] Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547
Google Scholar
[26] 黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4
Google Scholar
Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4
Google Scholar
[27] Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311
Google Scholar
[28] 李华, 郭党委 2015 实验技术与管理 32 51
Google Scholar
Li H, Guo D W 2015 Experimental Technology and Management 32 51
Google Scholar
Catalog
Metrics
- Abstract views: 7206
- PDF Downloads: 43
- Cited By: 0