-
AlN materials have a wide range of applications in the fields of optoelectronic, power electronic, and radio frequency. However, the significant lattice mismatch and thermal mismatch between heteroepitaxial AlN and its substrate lead to a high threading dislocation (TD) density, thereby degrading the performance of device. In this work, we introduce a novel, cost-effective, and stable approach to epitaxially growing AlN. We inject different doses of nitrogen ions into nano patterned sapphire substrates, and then deposit the AlN layers by using metal-organic chemical vapor deposition. Ultraviolet light-emitting diode (UV-LED) with a luminescence wavelength of 395 nm is fabricated on it, and the optoelectronic properties are evaluated. Compared with the sample prepared by the traditional method, the sample injected with N ions at a dose of 1×1013 cm–2 exhibits an 82% reduction in screw TD density, the lowest surface roughness, and a 52% increase in photoluminescence intensity. It can be seen that appropriate dose of N ion implantation can promote the lateral growth and merging process in AlN heteroepitaxy. This is due to the fact that the process of implantation of N ions can suppress the tilt and twist of the nucleation islands, effectively reducing the density of TDs in AlN. Furthermore, in comparison with the controlled LED, the LED prepared on the high quality AlN template increases 63.8% and 61.7% in light output power and wall plug efficiency, respectively. The observed enhancement in device performance is attributed to the TD density of the epitaxial layer decreasing, which effectively reduces the nonradiative recombination centers. In summary, this study indicates that the ion implantation can significantly improve the quality of epitaxial AlN, thereby facilitating the development of high-performance AlN-based UV-LEDs.
[1] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 72 196101
Google Scholar
Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101
Google Scholar
[2] 武鹏, 张涛, 张进成, 郝跃 2022 71 158503
Google Scholar
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503
Google Scholar
[3] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 66 167301
Google Scholar
Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301
Google Scholar
[4] Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683
Google Scholar
[5] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325
Google Scholar
[6] Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852
Google Scholar
[7] Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286
Google Scholar
[8] Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602
Google Scholar
[9] Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001
Google Scholar
[10] Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146
Google Scholar
[11] Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988
Google Scholar
[12] Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666
Google Scholar
[13] Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233
Google Scholar
[14] Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103
Google Scholar
[15] Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125
Google Scholar
[16] Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552
Google Scholar
[17] Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801
Google Scholar
[18] Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707
Google Scholar
[19] Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367
Google Scholar
[20] Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38
Google Scholar
[21] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850
Google Scholar
[22] Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097
Google Scholar
[23] Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853
Google Scholar
[24] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101
Google Scholar
[25] Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317
Google Scholar
[26] Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389
Google Scholar
-
-
[1] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 72 196101
Google Scholar
Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101
Google Scholar
[2] 武鹏, 张涛, 张进成, 郝跃 2022 71 158503
Google Scholar
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503
Google Scholar
[3] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 66 167301
Google Scholar
Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301
Google Scholar
[4] Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683
Google Scholar
[5] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325
Google Scholar
[6] Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852
Google Scholar
[7] Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286
Google Scholar
[8] Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602
Google Scholar
[9] Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001
Google Scholar
[10] Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146
Google Scholar
[11] Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988
Google Scholar
[12] Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666
Google Scholar
[13] Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233
Google Scholar
[14] Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103
Google Scholar
[15] Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125
Google Scholar
[16] Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552
Google Scholar
[17] Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801
Google Scholar
[18] Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707
Google Scholar
[19] Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367
Google Scholar
[20] Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38
Google Scholar
[21] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850
Google Scholar
[22] Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097
Google Scholar
[23] Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853
Google Scholar
[24] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101
Google Scholar
[25] Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317
Google Scholar
[26] Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389
Google Scholar
Catalog
Metrics
- Abstract views: 1599
- PDF Downloads: 63
- Cited By: 0