Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal friction characteristics of compacted billet of metal powder in sintering process

Hao Gang-Ling Xu Qiao-Ping Li Xian-Yu Wang Wei-Guo

Citation:

Internal friction characteristics of compacted billet of metal powder in sintering process

Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo
PDF
HTML
Get Citation
  • Sintering plays a decisive role to determine final product quality in the powder metallurgy process. Understanding the law of structure and defects as well as determining the initial sintering temperature and crystallization temperature will prove clear information to determine favorable sintering technology for the powder compacted billet. In this paper, the internal friction characteristics in the sintering process for powder compact billet, pure Al, Mg, Cu, Fe are systematically studied in terms of internal friction technology. Two internal friction peaks, named heating peak and cooling peak are respectively found in the first run. The cooling peak is a stable relaxational internal friction peak. It is concluded that the peak is associated with the viscous sliding of grain boundary based on the activation energy and peak temperature location. The heating peak is an unstable internal friction peak corresponding to the decline of resistance and relative dynamic modulus, the peak temperature being considered as an initial sintering temperature due to the great change of material performance. Furthermore, the heating peak is dependent on powder particle size and compressing pressure, which increases with the decrease of particle size or compressing pressure. The dependence can be understood according to the increase of weak bonding interface and activated slipping distance between powder particles. The internal friction of the powder compacted billet in the heating process gradually increases with the temperature increasing, which is mainly due to the micro sliding of the weak bonding interface, but the enhancing trend stops and internal friction rapidly declines when the temperature approaches to the peak location due to the transition of weak bonding interface to grain boundary, as a result, leading to the formation of the heating peak. The occurrence of therising temperature peak indicates the formation of grain boundary between powder particles in the sintering process of powder compacted billet. Correspondingly, the peak temperature can be used as a crystallization temperature.
      Corresponding author: Hao Gang-Ling, glhao@issp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51661032, 51301150), the Special Program of Youth New-star of Science and Technology of Shaanxi Province, China (Grant No.2013KJXX-11), and the Industrial Research Program of Yan’an Science and Technology Department, China (Grant No. 2016KG-02).
    [1]

    Goetzel C G 1949 Treatise on Powder Metallurgy (New York: Interscience Publishing) p156

    [2]

    Kingston W E 1951 The Physics of Powder Metallurgy (New York: McGraw-Hill Book Co., Inc.) p21

    [3]

    黄培云 2011 粉末冶金原理 (北京: 冶金工业出版社) 第288页

    Huang P Y 2011 Powder Metallurgy Principle (Beijing: Metallurgical Industry Press) p288 (in Chinese)

    [4]

    Krause R, Schatt W, Vetter B, Polity A 1990 Cryst. Res. Technol. 25 819Google Scholar

    [5]

    Hübner C G, Staab T, Leipner H S 1995 Status Solidi A 150 653Google Scholar

    [6]

    Wakai F, Nikolic Z S 2011 Acta Mater. 59 774Google Scholar

    [7]

    方前锋, 金学军 2014 内耗与力学谱基本原理及其应用 (上海: 上海交通大学出版社) 第1页

    Fang Q F, Jin X J 2014 Basic Principle and Application of Internal Friction and Mechanical Spectrum (Shanghai: Shanghai Jiaotong University Press) p1 (in Chinese)

    [8]

    王清周, 陆冬梅, 崔春翔, 韩福生 2008 57 7083Google Scholar

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta Phys. Sin. 57 7083Google Scholar

    [9]

    吴筱毅, 熊小敏, 张进修 2012 61 014601Google Scholar

    Wu X Y, Xiong X M, Zhang J X 2012 Acta Phys. Sin. 61 014601Google Scholar

    [10]

    何庆, 杨春利, 吴修胜, 陈志军, 陈初升, 刘卫 2010 59 7979Google Scholar

    He Q, Yang C L, Wu X S, Chen Z J, Chen C S, Liu W 2010 Acta Phys. Sin. 59 7979Google Scholar

    [11]

    Xia Y, Wang X P, Gao Y X, Hu J, Zhuang Z, Guo L J, Fang Q F, Liu C S 2014 Chin. Phys. Lett. 31 016201

    [12]

    Hao T, Tang H Y, Jiang W B, Wang X P, Fang Q F 2015 Arch. Metall. Mater. 60 2101Google Scholar

    [13]

    Golovin I S, Mikhailovskaya A V, Ryazantseva M A, Geptin A, Solonin A N 2011 Phys. Met. Metallog. 112 622Google Scholar

    [14]

    Golovin I S 2010 Phys. Met. Metallog. 110 405Google Scholar

    [15]

    Fan G D, Zheng M Y, Hu X S, Xu C, Wu K, Golovin I S 2012 Mat. Sci. Eng. A 556 588Google Scholar

    [16]

    Hao G L, Wang X F, Li X Y 2015 Chin. Phys. Lett. 32 026103Google Scholar

    [17]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第94页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) (in Chinese)

    [18]

    葛庭燧 2000 固体内耗理论基础 (北京: 科学出版社) 第103, 104页

    Kê T S 2000 Theoretical Basis of Solid Internal Friction pp103, 104 (Beijing: Science Press) (in Chinese)

    [19]

    郝汀, 唐海银, 蒋卫斌, 方前锋 2015 第十一届全国内耗与力学谱及其应用学术会议, 延安, 中国 2015年8月 第16−19页

    Hao T, Tang H Y, Jiang W B, Fang Q F 2015 Collection in 11th National Symposium on Solid Internal Friction and Mechanical Spectrum and Its Application Yan’an, China, August 2015 pp16−19 (in Chinese)

    [20]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p58

    [21]

    Fan G D, Zheng M Y, Hu X S, Xu C, Wu K, Golovin I S 2013 J. Alloy. Compd. 549 38Google Scholar

    [22]

    Gunderov D V, Polyakov A V, Sitdikov V D, Churakova A A, Golovin I S 2013 Phys. Met. Metallog. 114 1078

  • 图 1  升温测量过程中内耗-温度谱 (a) Al; (b) Mg; (c) Cu; (a) Fe

    Figure 1.  Dependence of internal friction on temperature during heating process for (a) Al, (b) Mg, (c) Cu, (d) Fe

    图 2  降温测量过程中内耗-温度谱 (a) Al; (b) Mg; (c) Cu; (a) Fe

    Figure 2.  Dependence of internal friction on temperature during cooling process for (a) Al, (b) Mg, (c) Cu, (d) Fe

    图 3  升降温过程中RDM-温度谱 (a) Al; (b) Mg; (c) Cu; (a) Fe

    Figure 3.  Dependence of internal friction on temperature during heating and subsequent cooling process for (a) Al, (b) Mg, (c) Cu, (d) Fe

    图 4  Cu和Fe粉末压坯的归一化电阻-温度谱

    Figure 4.  Dependence of normalized resistance on temperature for the Cu and Fe powder compact

    图 5  循环测量对Al粉末压坯P1峰的影响

    Figure 5.  Influence of cycle times on P1 peak for the Al powder compact

    图 6  颗粒粒径和压制压力对铝粉末压坯P1峰的影响  (a) 粒径; (b) 压力

    Figure 6.  Dependence of particle size and compressing pressure on internal friction for the Al powder compact: (a) Particle size; (b) pressure

    图 7  P2峰的Arrhenius关系

    Figure 7.  Arrhenius relation corresponding to P2 peak

    图 8  退火温度对铝粉末压坯P1峰的影响

    Figure 8.  Influence of annealing temperature on P1 peak for the Al powder compact

    Baidu
  • [1]

    Goetzel C G 1949 Treatise on Powder Metallurgy (New York: Interscience Publishing) p156

    [2]

    Kingston W E 1951 The Physics of Powder Metallurgy (New York: McGraw-Hill Book Co., Inc.) p21

    [3]

    黄培云 2011 粉末冶金原理 (北京: 冶金工业出版社) 第288页

    Huang P Y 2011 Powder Metallurgy Principle (Beijing: Metallurgical Industry Press) p288 (in Chinese)

    [4]

    Krause R, Schatt W, Vetter B, Polity A 1990 Cryst. Res. Technol. 25 819Google Scholar

    [5]

    Hübner C G, Staab T, Leipner H S 1995 Status Solidi A 150 653Google Scholar

    [6]

    Wakai F, Nikolic Z S 2011 Acta Mater. 59 774Google Scholar

    [7]

    方前锋, 金学军 2014 内耗与力学谱基本原理及其应用 (上海: 上海交通大学出版社) 第1页

    Fang Q F, Jin X J 2014 Basic Principle and Application of Internal Friction and Mechanical Spectrum (Shanghai: Shanghai Jiaotong University Press) p1 (in Chinese)

    [8]

    王清周, 陆冬梅, 崔春翔, 韩福生 2008 57 7083Google Scholar

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta Phys. Sin. 57 7083Google Scholar

    [9]

    吴筱毅, 熊小敏, 张进修 2012 61 014601Google Scholar

    Wu X Y, Xiong X M, Zhang J X 2012 Acta Phys. Sin. 61 014601Google Scholar

    [10]

    何庆, 杨春利, 吴修胜, 陈志军, 陈初升, 刘卫 2010 59 7979Google Scholar

    He Q, Yang C L, Wu X S, Chen Z J, Chen C S, Liu W 2010 Acta Phys. Sin. 59 7979Google Scholar

    [11]

    Xia Y, Wang X P, Gao Y X, Hu J, Zhuang Z, Guo L J, Fang Q F, Liu C S 2014 Chin. Phys. Lett. 31 016201

    [12]

    Hao T, Tang H Y, Jiang W B, Wang X P, Fang Q F 2015 Arch. Metall. Mater. 60 2101Google Scholar

    [13]

    Golovin I S, Mikhailovskaya A V, Ryazantseva M A, Geptin A, Solonin A N 2011 Phys. Met. Metallog. 112 622Google Scholar

    [14]

    Golovin I S 2010 Phys. Met. Metallog. 110 405Google Scholar

    [15]

    Fan G D, Zheng M Y, Hu X S, Xu C, Wu K, Golovin I S 2012 Mat. Sci. Eng. A 556 588Google Scholar

    [16]

    Hao G L, Wang X F, Li X Y 2015 Chin. Phys. Lett. 32 026103Google Scholar

    [17]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第94页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) (in Chinese)

    [18]

    葛庭燧 2000 固体内耗理论基础 (北京: 科学出版社) 第103, 104页

    Kê T S 2000 Theoretical Basis of Solid Internal Friction pp103, 104 (Beijing: Science Press) (in Chinese)

    [19]

    郝汀, 唐海银, 蒋卫斌, 方前锋 2015 第十一届全国内耗与力学谱及其应用学术会议, 延安, 中国 2015年8月 第16−19页

    Hao T, Tang H Y, Jiang W B, Fang Q F 2015 Collection in 11th National Symposium on Solid Internal Friction and Mechanical Spectrum and Its Application Yan’an, China, August 2015 pp16−19 (in Chinese)

    [20]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p58

    [21]

    Fan G D, Zheng M Y, Hu X S, Xu C, Wu K, Golovin I S 2013 J. Alloy. Compd. 549 38Google Scholar

    [22]

    Gunderov D V, Polyakov A V, Sitdikov V D, Churakova A A, Golovin I S 2013 Phys. Met. Metallog. 114 1078

  • [1] Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo. Phase-field simulation of sintering process of ceramic composite fuel. Acta Physica Sinica, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie. A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Acta Physica Sinica, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [3] Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan. Internal friction of Ni-Al intermetallic compound formation in sintering process. Acta Physica Sinica, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [4] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] Zhou Zheng-Cun, Du Jie, Zhu Xiao-Bin, Yan Yong-Jian, Wang Xing-Fu. Snoek-type relaxation caused by interstitial atoms in sintered β-type Ti-Nb alloy. Acta Physica Sinica, 2019, 68(8): 086201. doi: 10.7498/aps.68.20182120
    [6] Jiang Wen-Quan, Du Guang-Yu, Ba De-Chun, Yang Fan. Micro-mechanism of damping vibration attenuation on porous metal coating. Acta Physica Sinica, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [7] Zheng Zong-Wen, Xu Ting-Dong, Wang Kai, Shao Chong. Progress in the theory of grain boundary anelastic relaxation. Acta Physica Sinica, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [8] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [9] Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [10] Wu Xiu-Sheng, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei. Low-frequency internal friction study of La1-xSrxFeO3-δ(0≤x≤2/3)system. Acta Physica Sinica, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [11] Hu Zhi-Hua, Lian Fa-Zeng, Zhu Ming-Gang, Li Wei. The microstructure and impact toughness of sintered Nd-Fe-B magnets. Acta Physica Sinica, 2008, 57(2): 1202-1206. doi: 10.7498/aps.57.1202
    [12] Sun Wei, Wang Qing-Zhou, Han Fu-Sheng. The internal friction related to dislocation peak in a graphite particulate CuAlMn shape memory alloy composite. Acta Physica Sinica, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [13] Li Pei-Gang, Lei Ming, Tang Wei-Hua, Song Peng-Yun, Chen Chin-Ping, Li Ling-Hong. The effect of grain boundaries on magnetic and transport properties in colossal magnetoresistance particle film. Acta Physica Sinica, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [14] Hu Jian-Min, Xin Jiang-Bo, Lü Qiang, Wang Yue-Yuan, Rong Jian-Ying. Powders (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x prepared by mechanical alloying and thermoelectric properties of cold-pressed and s. Acta Physica Sinica, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [15] Li Zheng, He Ye-Qing, Hu Bo-Ping, Wang Zhen-Xi. Thermodynamic effects on the sintered Nd-Fe-B magnets. Acta Physica Sinica, 2005, 54(11): 5400-5404. doi: 10.7498/aps.54.5400
    [16] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [17] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [18] Wang Qiang, Zhou Zheng-Cun, Han Fu-Sheng. The two internal friction peaks in rapidly cooled Fe71Al29 alloy*. Acta Physica Sinica, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [19] Guo Li-Jun, Zhu Fang-Qiu, Zhu Zhen-Gang. . Acta Physica Sinica, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [20] LIANG YUN-FENG, SHUI JIA-PENG, CHEN GANG, ZHU ZHEN-GANG. INTERNAL FRICTION BEHAVIOUR OF THE SOLID-LIQUID TRANSITION IN THE Pb-Sn ALLOYS. Acta Physica Sinica, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
Metrics
  • Abstract views:  8616
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2019
  • Accepted Date:  27 February 2019
  • Available Online:  06 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map