Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micro-mechanism of damping vibration attenuation on porous metal coating

Jiang Wen-Quan Du Guang-Yu Ba De-Chun Yang Fan

Citation:

Micro-mechanism of damping vibration attenuation on porous metal coating

Jiang Wen-Quan, Du Guang-Yu, Ba De-Chun, Yang Fan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on molecular dynamics method and in-situ scanning electron microscopy (SEM) observations, the damping efficiency of the porous metal coating is discussed in this paper. Molecular dynamics simulation is performed to study the plastic deformations of Cu films with vibration. In the simulation, embedded atom method (EAM) is selected and in the method an interatomic potential function is used. And porous copper coating is carried out for calculating by using velocity-verlet algorithm. The plastic deformation is due to the dislocation nucleation near free surfaces, and the dislocation is shaped into forward emission in the crystal orientation near the defects. At the same time, the change curves of stress and strain are drawn by origin software. Damping factor (η) is calculated by using the time of strain lagging stress. The regulation of elastic potential energy attenuation is obtained by energy calculation. On the other hand, in-situ tensile/compression experiment is conducted by the FEI Quanta 200 SEM with a maximum load capacity of 2 kN at room temperature. A copper layer is deposited on the surface of the polyimide film by the electron beam evaporation deposition method. The thickness of the copper layer is 10 μm and the thickness of polyimide is 175 μm. Using the scanning electron microscope, microstructures of the coating are observed. It could be seen that the coating and the polyimide film are both better in compactness. Using in-situ testing machine at SEM, the samples with and without copper coatings are respectively tested under tensile and unloading. The rate of displacement loading is 2 mm/min, the results of load (F) and displacement (l') are printed every 0.1 s. The loading direction is horizontal. During in-situ tensile/compression test, the straining is stopped several times in order to make the observations and take micrographs. The digital SEM images are directly transferred to a computer via a direct memory access type A/D converter, which can rapidly capture clear images of the 1024×943 pixel frames. The simulations and experimental results indicate that the dislocation near defects get rid of weak pinning points and limit to the strong pinning point, the internal friction is generated due to the change of dislocation and the relative sliding near grain boundary, and the stored elastic potential energy is consumed, which causes the damping effect of the film.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51005043), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. N130403012, N140301001), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120042110031).
    [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211177
    [3] Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan. Internal friction of Ni-Al intermetallic compound formation in sintering process. Acta Physica Sinica, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [4] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [5] Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo. Internal friction characteristics of compacted billet of metal powder in sintering process. Acta Physica Sinica, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [8] Guo Qiao-Neng, Cao Yi-Gang, Sun Qiang, Liu Zhong-Xia, Jia Yu, Huo Yu-Ping. Temperature dependence of fatigue properties of ultrathin copper films: molecular dynamics simulations. Acta Physica Sinica, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [9] Lan Hui-Qing, Xu Cang. Molecular dynamics simulation on friction process of silicon-doped diamond-like carbon films. Acta Physica Sinica, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [10] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [11] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [12] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian. Construction of metallic nanocrystalline samples by molecular dynamics simulation. Acta Physica Sinica, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [15] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [16] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  6162
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2014
  • Accepted Date:  31 January 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map